

Key Elements in Fielding Capabilities
These authors discuss how the 76th Software Maintenance
Group successfully develops software for the Department of
Defense using two key elements: high fidelity test environments
and collaboration.
by John D. Holcomb and Michael Hoehn

Delivering Capabilities Through Partnerships
Here is how the 402nd Software Maintenance Group successfully
partnered with Northrop Grumman Corporation to maintain the
complex E-8C Joint Surveillance Tactical Airborne Radar Systems
software.
by Chris D. Moore

MILS:Architecture for High Assurance Embedded
Computing
These authors propose that the Multiple Independent Levels of
Security architecture is a solution to meet the needs for critical
information assurance systems that deliver the strongest degree of
security and safety.
by W. Mark Vanfleet, R. William Beckwith, Dr. Ben Calloni, Jahn A. Luke,
Dr. Carol Taylor, and Gordon Uchenick

Six Steps to a Successful COTS Implementation
This author explains how a successful implementation of a
commercial off-the-shelf-intensive software system can save
programs money – if you have the right solution and understand
the potential risks involved.
by Arlene F. Minkiewicz

Performance-Based Earned Value
Performance-Based Earned Value is a set of principles and
guidelines that specify the most effective measures of cost,
schedule, and product quality performance, which is distinguished
by its focus on customer requirements.
by Paul J. Solomon

Balanced Scorecards: From Golf to Business
If you want to be No. 1 in your golf game or in your business,
this author shows how effective use of the Balanced Scorecard
tool can help get you there by providing balanced measures with
supporting data.
by Bill Ravensberg

Systems:Systems: FieldingFielding CaCapabilitiespabilities

2 CROSSTALK The Journal of Defense Software Engineering August 2005

4

8

12

17

22

27

Cover Design by
Kent Bingham.

3

7

30

31

DeparDepar tmentstments

ON THE COVER

From the Sponsor
From the Publisher

Coming Events

Web Sites

BackTalk

CrossTalk
OC-ALC/76 SMXG

CO-SPONSOR

OO-ALC/309 SMXG
CO-SPONSOR

WR-ALC/402 SMXG
CO-SPONSOR

PUBLISHER

ASSOCIATE PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Kevin Stamey

Randy Hill

Tom Christian

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 775-5555

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Oklahoma City-Air Logistics Center (76 SMXG),
Ogden-Air Logistics Center (309 SMXG), and
Warner Robins-Air Logistics Center (402 SMXG)
SMXG Software Maintenance Groups (SMXG) are
the official co-sponsors of CROSSTALK,The Journal of
Defense Software Engineering. The SMXG’s and the
Software Technology Support Center (STSC) are
working jointly to encourage the engineering develop-
ment of software to improve the reliability, sustainabil-
ity, and responsiveness of our warfighting capability.

The STSC is the publisher of CrossTalk, provid-
ing both editorial oversight and technical review of the
journal.

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail us or use the form on p. 30.

309 SMXG/MXDB
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820
(801) 775-5555

Article Submissions:We welcome articles of interest
to the defense software community.Articles must be
approved by the CROSSTALK editorial board prior to
publication. Please follow the Author Guidelines, avail-
able at <www.stsc.hill.af.mil/crosstalk/xtlkguid.pdf>.
CROSSTALK does not pay for submissions. Articles
published in CROSSTALK remain the property of the
authors and may be submitted to other publications.

Reprints: Permission to reprint or post articles must
be requested from the author or the copyright hold-
er and coordinated with CROSSTALK.

Trademarks and Endorsements:This Department of
Defense (DoD) journal is an authorized publication
for members of the DoD . Contents of CROSSTALK
are not necessarily the official views of, or endorsed
by, the U.S. government, the DoD, or the STSC. All
product names referenced in this issue are trademarks
of their companies.

Coming Events: Please submit conferences, seminars,
symposiums, etc. that are of interest to our readers at
least 90 days before registration. Mail or e-mail
announcements to us.

CrossTalk Online Services: See <www.stsc.hill.af.mil/
crosstalk>, call (801) 777-7026, or e-mail <stsc.web
master@hill.af.mil>.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

SoftwarSoftware e EngineeringEngineering TTechnoloechnologgyy

Open Open FForumorum

From the Sponsor

One of the beauties of software is how quickly we can make changes compared to the
hardware world. This has given rise to the tremendous expansion of military soft-

ware applications, which has occurred during the past thirty odd years. I recently saw an
illustration that plotted the number of lines of software on U.S. fighter aircraft starting
with the F-111 and F-4 and progressing to the F/A-22 and F-35. It was exponential as
one might expect (we software types are beneficiaries of Moore’s Law and hardware
improvements after all). The interesting point to remember is that this embarrassment of

riches contains a daunting challenge, namely efficiently harnessing this great flexibility that software
affords. We have found over the years that there is “no royal road to learning” as Euclid said. To
do software right we have to do it the old-fashioned way, that is, relentless commitment to quality:
employing peer reviews, configuration control, documentation, and testing.

The topic of this issue is “Systems: Fielding Capabilities.” It is really the reason that all of us
who provide software capability are employed. It is our job to get what is needed to those who need
to use it. Often we think of software as an intellectual pursuit. All of us have felt the exultation of
solving a difficult problem or finding a creative solution but ultimately we must focus on our cus-
tomer, not ourselves. To this end, it is not enough that we satisfy ourselves with our software abil-
ities but that we satisfy those who depend upon us. Fielding capabilities entails doing our work both
well and quickly. Well so the warfighter is not disappointed, or worse, in undue risk, and quickly so
the warfighter is not kept waiting. This issue will help you do that.

Our Job Is to Get It There

Thomas F. Christian, Jr.
Warner Robins Air Logistics Center Co-Sponsor

August 2005 www.stsc.hill.af.mil 3

From the Publisher

This month’s theme, “Systems: Fielding Capabilities,” developed during a discussion with
CrossTalk’s sponsors about merging hardware and software. As they considered this,

they emphasized that importance should not be placed on the system components of hard-
ware and software; importance should be placed on the capability required by the user. This
is such an important concept that we decided to build a theme around it.

We start our theme discussion with Key Elements in Fielding Capabilities by John D. Holcomb
and Michael Hoehn. These authors discuss the benefits of testing environments that emu-

late the true user environment and the need for ongoing communication among stakeholders. In
Delivering Capabilities Through Partnerships, Chris D. Moore details his experience with a military-industry
partnership focused on providing the U.S. military with needed core competencies to ensure contin-
ued support to the warfighter. We conclude our theme articles with MILS: Architecture for High Assurance
Embedded Computing by several authors who discuss information assurance as a method for enabling the
capability to win wars via superior knowledge.

We continue this issue with our supporting articles. In Six Steps to a Successful COTS Implementation,
Arlene F. Minkiewicz shares key points to contemplate and implement when considering commercial
off-the-shelf as part of your end-product. Paul J. Solomon and Bill Ravensberg also contribute with
Performance-Based Earned Value and Balanced Scorecards: From Golf to Business, respectively, explaining how
earned value and balanced scorecards are each key to tracking project progress.

CrossTalk continues to aim to provide readers with the capability to buy and build software bet-
ter. I hope we further our mission with this issue.

Stay Focused on the User

Elizabeth Starrett
Associate Publisher

Systems: Fielding Capabilities

4 CROSSTALK The Journal of Defense Software Engineering August 2005

The mission of the 76th Software
Maintenance Group (SMXG, former-

ly MAS) at the Oklahoma City-Air
Logistics Center, Tinker Air Force Base
(AFB), Okla., includes positioning opera-
tional capabilities in the field, and improv-
ing and adding to them through software
development and sustainment. The 76th
SMXG performs this mission for the E-3,
B-1, B-2, and B-52 aircraft, and for the Air
Launched Cruise Missile (ALCM),
Conventional Air Launched Cruise Missile
(CALCM), and Advanced Cruise Missile
(ACM) weapons. The group also has
extensive capability for development and
maintenance of Test Program Set hard-
ware and software for automatic test
equipment; industrial automation; and jet
engine testing, trending, and diagnostics.

Any organization that develops or main-
tains weapon system software must have
certain resources in place. These resources
include people, a development environ-
ment, a test environment, tools, and facilities
to house these resources. Policies, instruc-
tions, standards, and processes are required
to control how the work is accomplished.
Measurement and metrics requirements
must be established to facilitate tracking
workload/labor; to evaluate financial and
project performance; and to establish the
foundations for pricing future projects,
making management decisions, and process
improvement efforts. We have an outstand-
ing Software Engineering Process Group
(SEPG) that organizes and develops
processes and standards, and maintains
them online. It also establishes and manages
our measurement and metrics requirements
and process improvement efforts and the
organizational software quality program.

The 76th SMXG consists of approxi-
mately 500 engineers, computer scientists,
and staff personnel, the majority of whom
have in excess of 15 years experience in the
organization. Various development environ-
ments are used based on the weapon system
or automatic test equipment that the appli-

cation software runs on, however, most
applications are developed on IBM main-
frames, Sun workstations, or networked per-
sonal computers. Tools used include assem-
blers, compilers, and tools for project plan-
ning and management, labor tracking,
requirements tracking, configuration man-
agement, documentation, etc. A detailed dis-
cussion of all aspects of our operation is
not possible within the scope of this article,
and most readers are aware of these aspects
from their own experience. Thus this article
will focus on two key areas that reduce risk
when fielding operational capabilities: high
fidelity test environments and collaboration.

High Fidelity Test Environments
The test environment is one of the key ele-
ments in fielding capabilities. If it does not
emulate the fielded system to the maximum
extent possible, then the risk of operational
problems when the software is fielded
increases. The initial Avionics Integrated
Support Facility Military Construction
Project at Tinker AFB was built in the early
1980s to provide floor space to house the
software support personnel and develop-
ment environments for the E-3, B-52, Short
Range Attack Missile (SRAM), and the
ALCM. An example of our high fidelity test
environments, the B-52 Avionics Integrated
Support Facility (AISF), is a hot mockup of
the aircraft avionics interfaced with the con-
trols and displays. Simulated dynamics of
the aircraft are provided by a vehicle system
simulator, and weapon simulation is provid-
ed by a weapon system simulator.

The SRAM and ALCM laboratory area
was built adjacent to the B-52 AISF area.
The cruise missile project provided inter-
faces between the B-52 AISF and
empty/loaded pylon/launcher station as
well as between the AISF and the ALCM
subsystem simulator. This test environment
is used for simulation and test of the B-52
operational flight software, the aircraft to
missiles interfaces, and the missile opera-
tional flight software. By utilizing the com-

bination of the B-52 AISF and pylon or
launcher loaded with test missiles, all com-
munication between the aircraft and missiles
can be effectively tested. The SRAM pro-
gram has been disposed of and the missiles
laboratory has evolved through the years to
include capability for ACM and CALCM.

A missile electronic subsystem simula-
tor, consisting of a table of interfaced mis-
sile electronics, is also available. Breakout
boxes can be used at the umbilical connec-
tor, or at any of the internal missile interface
connectors to allow monitoring of the inter-
faces. Testing of the B-52 operational flight
software and missile operational flight pro-
gram is accomplished by first planning the
mission, then flying the aircraft mission on
the AISF, rotating the launcher to the prop-
er missile, if necessary, then simulating
launch, and finally simulating free flight of
the missile to target.

The AISF interface with the ALCM sub-
system simulator is used to test aircraft/mis-
sile interface up to launch and subsequently
test free-flight simulation of the missile
operational flight program from launch to
detonation at target. Successful testing of B-
52 and missile operational flight software
and mission planning software in this labo-
ratory provides very high confidence that
flight testing will be successful and that the
software will provide the required capability
when fielded.

A government owned and operated test
environment for weapon systems has bene-
fits other than the ability to fully test the
software. Having this capability in a govern-
ment facility allows it to be used for com-
petitive procurement of projects that are
beyond organic capability. For example, a B-
52 modification was programmed and fund-
ed, but the sole-source contractor’s price for
developing the modification at the compa-
ny’s facility was in excess of the budget. We
recommended to the program office that
the project be competitively procured based
on performance in our government facility.
The effort was competed, development and

Key Elements in Fielding Capabilities

Organizations that develop software for the Department of Defense must have knowledgeable people to do the work accord-
ing to documented and mature processes and standards that guide how the work is accomplished. The organization must also
have in place the hardware and tools that are used to execute the processes to develop and test the end products. Success of
their efforts depends on two key elements: the fidelity of the test environment, and the amount of collaboration with other agen-
cies involved in their program.

John D. Holcomb and Michael Hoehn
76th Software Maintenance Group

Key Elements in Fielding Capabilities

August 2005 www.stsc.hill.af.mil 5

testing was accomplished in the AISF by the
winning contractor, and the final cost was
approximately one half of the original bid.

Another additional benefit is the expert-
ise that organic personnel develop as a result
of having this type of laboratory. An exam-
ple of this occurred after two B-52/ALCM-
W80-1 Joint Test Assembly (JTA) flight
tests resulted in aborted launches with total
mission failure. An analysis of the mission
data indicated a problem between the B-52
offensive avionics system (OAS) and the
missile test payload (W80-1 JTA). After
returning to the home base, the aircraft
underwent extensive ground testing by Air
Force personnel and no problem could be
found. Sandia National Laboratories per-
formed a series of comprehensive tests on
their JTA package and concluded that it did
not contribute to the aborted launches.
Sandia further prepared a letter to the
Cruise Missile Product Division detailing
their findings and recommending the Air
Force suspend future B-52/ALCM JTA
flight tests until the Air Force could identify
the source and correct the problem.

This problem was referred to our engi-
neers, and the B-52/missiles laboratories
were configured for an ALCM JTA launch
using missile and B-52 production hardware
and operational software. Utilizing state-of-
the-art recording and analysis tools, engi-
neers performed multiple JTA launches.
Analysis of the laboratory flight test data
and the JTA data from the aborted launches
clearly determined that the aborted launches
were a result of the JTA package. Having
determined the source of the problem, engi-
neers from the AISF presented their find-
ings identifying the JTA as the source of the
problem and isolating specific circuits in the
JTA that were suspect. Sandia accepted
these findings, had additional testing per-
formed on the suspected circuits, and was
able to isolate the specific failure mode.

Similar test environment capabilities
exist in all of our weapon system laborato-
ries. For example, the E-3 Airborne
Warning and Control System (AWACS) lab-
oratory has both surveillance radar configu-
rations; this way, all versions of the E-3 soft-
ware can be tested. During Desert
Shield/Desert Storm, an enhancement was
required to support that effort. The require-
ment was identified on Thursday. The
change was programmed, implemented,
tested in the laboratory, flight tested at
Tinker AFB, and sent to the theatre on a
resupply flight the next Monday. This
demonstrated the fast turnaround capabili-
ties of organic resources with high fidelity
test environments.

This system has also helped with soft-
ware not developed by our organization.

During the early 1980s, the AWACS wing
experienced a serious problem with the E-3
navigational computer system. The system
consistently failed to capture the turn por-
tion of an established surveillance orbit,
potentially causing the E-3 to fly into unau-
thorized airspace. Serious consequences
were narrowly avoided on several occasions.
Once notified of the problem, the E-3 AISF
was able to reproduce the problem in the
laboratory, locate the source in another
organization’s code, and develop a fix. The
modified operational flight program was
then tested in the E-3 AISF and delivered to
the E-3 fleet in a timely manner.

These types of weapons system test
environments are normally established as a
part of the weapon system development
program at the prime contractor’s facility.
The test equipment is then either duplicated
at or transferred to a government facility for
support of the weapon system software
after deployment of the weapon system.
Since the test environment includes the
avionics suite, the cost is very high. In 1995,
replacement cost estimates for the AISFs
were as follows:
• B-1: $171 million.
• B-52: $54 million.
• Missiles: $51 million.
• E-3: $100 million.

Each AISF is unique and may have more
than one hot mockup of the avionics.
Simulation computers are typically Harris
(now Concurrent) computers and use
Fortran, C, or C++, as the source lan-
guage(s) for the simulation software
depending on the specific application. Our
experience is that the high cost of these
high fidelity test environments is well worth
the investment because they enable the soft-
ware support activity to provide the cus-
tomer and the warfighter with the required
capabilities when they are needed.

Collaboration
Another key element in fielding capabilities
is teamwork between the program manager,
system engineer, software developer,
warfighter, and tester. The B-52 Mission
Planning Software Section is one of our top
success stories. This section has responsibil-
ity for development and sustainment of the
B-52 mission planning software (B-52
Aircraft/Weapons/Electronics [A/W/E])
that runs on the Air Force mission support
system (AFMSS). This system essentially
automates the process that the flight crews
previously performed manually – according
to the Technical Orders (TOs), which are
used as the basis for the software require-
ments. One of the most important keys to
success is customer involvement. To ensure
that the product produced meets the

user/customer requirements, the warfight-
ers are involved in each phase throughout
the development.

The B-52 A/W/E is one element of the
complete mission planning environment,
which is a combination of 35 different ele-
ments of software and 17 pieces of dedicat-
ed B-52 aircraft software, as shown in Figure
1 (see page 6); the Glossary defines the
terms in the figure. These are developed by
different agencies and contractors, and
many serve multiple weapon systems.
Integration of all of these applications on a
single system to meet overall warfighter
requirements is a significant part of our
effort.

The main key to success in this area is
the in-depth understanding of the entire
environment, both hardware and software.
The mission planning process is tested from
beginning to end, including the production
of all flight products. These products are
taken through the final verification of actu-
ally loading them in our B-52 AISF and fly-
ing the missions, complete with weapons,
and the recording of all the data for analysis.

Ensuring success begins with customer
or user relationships. More than a third of
our key people who develop and maintain
mission planning applications are on a first-
name basis with dozens of stakeholders:
• B-52 System Program Office. All mis-

sion planning system engineers, pro-
gram managers, and weapon system
integration engineers communicate sev-
eral times a week.

• 46th Operations Group/Test Squad-
ron. Responsible Test Organization for
mission planning; participates in our
development test (DT), DT/operational
test (OT), and formal qualification test
(FQT).

• 28th Test Squadron. Final test authori-
ty for force development evaluation
(FDE).

• Air Force Operational Test and Eval-
uation Center (AFOTEC) Detach-
ment 2. Official OT agency for mission
planning.

• AFOTEC Detachment 5. Official OT
agency for weapon systems like the
Cruise Missiles and Joint Air to Surface
Stand-off Missile (JASSM).

• 49th Flight Test Squadron. B-52
Flight Test Squadron at Barksdale AFB.

• 5th Operational Support Squadron.
Warfighters from Minot AFB.

• 2nd Operational Support Squadron.
Warfighters from Barksdale AFB.

• Mission Planning System Support
Facility. Air Force mission planning
software integration, distribution, and
support from Hill AFB.
As noted above, throughout the applica-

Systems: Fielding Capabilities

6 CROSSTALK The Journal of Defense Software Engineering August 2005

tion’s life cycle the stakeholders meet fre-
quently via face-to-face meetings and tele-
conferences. At least once a year, a mission
planning open house is conducted at the
user’s base of operations. This includes sev-
eral days for familiarization with our existing
applications and user interface working
group meetings to discuss upcoming
designs, priorities, trade-offs, and require-
ments. Our engineers and computer scien-
tists also hit the road, spending an average
of more than 200 man-days per year in the
field, meeting with the users, other develop-

ers, and other program offices to continual-
ly coordinate efforts, schedules, and require-
ments, and to provide familiarization with
our systems.

Requirements review boards for our
A/W/E applications and AFMSS core are
conducted and defect review boards are
held following each formal test. Eight offi-
cial test events were hosted last year. Each
event had one or more users or customers
working side-by-side with the developers. As
part of the development effort, several DTs
are hosted prior to the FQT. At least one of

these DT tests will be a combined DT/OT
that is a development test using operational
procedures, data, and crew members, mak-
ing it as real-world as possible. This process
is a profound strength in the organization.
Feedback is received from the users contin-
ually throughout the development phase.

The OT certification brief is prepared
and presented. Using Air Force Manual 63-
119, Certification of System Readiness for
Dedicated Operational Test and Evaluation,
a matrix of 33 certification templates is eval-
uated that identifies specific problem or risk
areas that could hinder the smooth transi-
tion from development, through test, to the
fielding of a product. All of the communi-
ties listed above participate in this process,
and the entire group agrees that the product
is ready to be tested. This final step provides
complete confidence that the products will
meet the warfighter’s expectations the first
time, every time. When a product approach-
es fielding certification, the actual users have
seen it, used it, evaluated it, tested it, and
stand behind it along with the developers.

A recent success story centers around a
flight performance change to the way mis-
sion planners need to account for drag on
the B-52 because of external weapons hang-
ing on the wings. The multiple weapon con-
figurations create different fuel burn rates
affecting the range of the aircraft.
Implementing this change in the TO
spanned three software releases and
required participation from almost every
organization listed above.

Through requirements review, software
development, integration, test, and the

TBMCS INTEL
ThreatsDAFIF

Figure 1: B-52 Mission Planning Environment

AFMSS CORE
to A/W/E ICD

FPM

Maps

TO 1B52H-1-1

ICSMS to
MSN PLAN

IDD

PRINTER Text,
Color Graphics

D
D

L
C

D
T

U
C

D
T

C

OAS BII to
MSN PLAN

IDD

AMI to
MSN PLAN

IDD

SWPS
 U2A ICD

B-52
ALCM
ACM
CALCM C/D B-52H

A/W/E
1B52H-1
1B52H-5

1B52H-1-12
1B52H-34-x

1B52H-25-x...

1

2

3

4

5

1 - JDAM
2 - JASSM
3 - AGM142
4 -
5 - JSOW

A/W/E TO

CLOAR

A/W/E ICDs

Smart Weapon
Planning Modules
(A/W/Es)

PFPS

WCMD

Figure 1: B-52 Mission Planning Environment

A/W/E Aircraft/Weapons/Electronics
ACM Advanced Cruise Missile
AFMSS Air Force Mission Support System
AFOTEC Air Force Operational Test and

Evaluation Center
AFPD Air Force Policy Directive
AGM Air-to-Ground Missile
AISF Avionics Integrated Support Facility
ALCM Air Launched Cruise Missile
AMI Avionics Midlife Improvement
AWACS Airborne Warning and Control System
CALCM Conventional Air Launched Cruise Missile
CALCM C/D Two versions of the CALCM
CLOAR Common Low Observability Auto Router
DAFIF Digital Aeronautical Flight Information File
DDLC Digital Data Loader Cartridge
DT Development Test
DTC Data Transfer Cartridge
DTUC Data Transfer Unit Cartridge
FDE Force Development Evaluation
FPM Flight Performance Model

FQT Formal Qualification Test
ICD Interface Control Document
ICSMS Integrated Conventional Stores

Management System
IDD Interface Definition Document
INTEL Intelligence Data
JASSM Joint Air-to-Surface Standoff Missile
JDAM Joint Direct Attack Munitions
JSOW Joint Standoff Weapon
JTA Joint Test Assembly
OAS Offensive Avionics System
OT Operational Test
PFPS Personal Flight Planning System
SRAM Short Range Attack Missile
SEPG Software Engineering Process Group
SMXG Software Maintenance Group
SWPS Strategic War Planning System
TO Technical Order
TBMCS Theater Battle Management Core System
U2A U.S. Strategic Command to AFMSS
WCMD Wind Corrected Munitions Dispenser

Glossary

Key Elements in Fielding Capabilities

August 2005 www.stsc.hill.af.mil 7

defect review board process, each spiral
would further refine the requirements, each
time giving the user increased capabilities
and enhancing the system effectiveness to
plan aircraft missions. It became clear early
when dealing with this issue that each mem-
ber of the team had a different piece of the
puzzle. Only through continuous communi-
cation and collaboration were the answers to
all the questions understood enough to pro-
duce a quality tool for the warfighter.

From start to finish, nothing is done in
a vacuum without the user. A lot of com-
panies will offer the user an early look or
attendance at design reviews, but the cus-
tomer seldom gets the complete picture or
real hands-on experience during develop-
ment of its system. As explained here,
Tinker AFB’s B-52 mission planning sec-
tion goes above and beyond to get the user
involved in every step. Nothing is hidden
or kept from the customer. By involving
the users in requirements reviews, early
DT events, and using our integrated suite
of test facilities, the customer is allowed to
actually run the system end-to-end in one
location. A demonstration of one or two
isolated pieces of the puzzle is not needed
because the user sees the whole enterprise
and walks away with a feeling of confi-
dence that what is paid for will provide the
capabilities required in the field.

This type of team effort is becoming
more important with the Air Force Policy
Directive (AFPD) 63-1 cited commander’s
intent that states, “The primary mission of

our acquisition system is to rapidly deliver
to the warfighter affordable, sustainable
capability that meets their expectations.”
The objective of AFPD 63-1 is to “create
a context that allows the program manager
to shape and execute a program with an
emphasis on teamwork, trust, common
sense, and agility.” It further states that
“the warfighters, developers/acquirers,
technologists, testers, budgeters, sustainers,
and industry must plan and execute togeth-
er in order to meet the Commander’s
intent.” These seem to be lofty ideals, but
we have proven they can be done.

Summary
Fielding capabilities can be enhanced by
having high fidelity test environments and
by collaboration between all of the partic-
ipants on a program. The Air Logistics
Centers at Robins AFB and Hill AFB have
similar capabilities to those that are
described in this article, although for dif-
ferent weapon systems. Program man-
agers may be able to take advantage of
existing organic resources to reduce cost
and risk. Further, partnering agreements
can be established between organic soft-
ware support activities and contractors to
facilitate utilization of organic resources
in teaming arrangements to work jointly
on Department of Defense projects. All
three Air Logistic Center software sup-
port activities have Web sites (see page 30)
that provide contacts.u

About the Authors

John D. Holcomb is
the Operational Flight
Programs technical ex-
pert in the 76th Soft-
ware Maintenance Group
at the Oklahoma City-

Air Logistics Center, Tinker Air Force
Base, Okla. He has 40 years of federal
service, including 33 years of experi-
ence in weapon systems software, and
participated in the development of the
Department of Defense Standard
2167. He has a bachelor’s degree in
math and physics (double major) from
the University of Central Oklahoma.

76th SMXG
4750 Staff DR
Tinker AFB, OK 73145-3318
Phone: (405) 736-3835
Fax: (405) 736-3584
E-mail: john.holcomb@tinker.af.mil

Michael Hoehn cur-
rently manages the B-52
Mission Planning Soft-
ware Section in the 76th
Software Maintenance
Group at Tinker Air

Force Base, Okla. He has more than 15
years experience in both Test Program
Set and Operational Flight Program
software development and mainte-
nance.

76th SMXG
8080 Perimeter RD STE 107
Tinker AFB, OK 73145
Phone: (405) 736-5539
Fax: (405) 736-4129
E-mail:michael.hoehn@tinker.af.mil

COMING EVENTS

September 12-16
Practical Software Quality and
Testing Conference 2005 North

Minneapolis, MN
www.psqtconference.com/

2005north

September 18-23
International Function Point Users

Group 1st Annual International Software
Measurement and Analysis Conference

New Orleans, LA
www.ifpug.org/conferences/

annual.htm

September 19-22
Better Software Conference

and Expo 2005
San Francisco, CA

www.sqe.com/bettersoftwareconf

September 26-27
PDF Conference and Expo

Washington, DC
www.pdfconference.com

October 16-20
Object-Oriented Programming, Systems,
Languages, and Applications Conference

San Diego, CA
www.oopsla.org/2005/ShowPage.

do?id=Home

October 17-20
MILCOM 2005

Military Communication Conference
Atlantic City, NJ

www.milcom.org/2005

October 17-21
Quality Assurance Institute’s 26th

Annual Software Testing Conference
Orlando, FL

www.qaiusa.com

May 1-4, 2006
2006 Systems and Software

Technology Conference

Salt Lake City, UT
www.stc-online.org

8 CROSSTALK The Journal of Defense Software Engineering August 2005

Delivering Capabilities Through Partnerships
Chris D. Moore

Warner Robins-Air Logistics Center

As public-private partnerships become more prevalent in the Department of Defense for providing logistics support for
advanced weapon systems, integrated teams must look for unconventional opportunities to exploit the best capabilities of their
combined resources to support many diverse program objectives. The challenge is figuring out how to evolve traditional cus-
tomer-supplier relationships into truly integrated teams with common objectives at the forefront. Warner Robins-Air Logistics
Center and the Northrop Grumman Corporation are pioneering a new path with their partnered E-8C Joint STARS soft-
ware maintenance team.

The 402d Software Maintenance Group
(SMXG, formerly MAS) at Warner

Robins-Air Logistics Center (WR-ALC),
Robins Air Force Base (AFB), Ga., is soar-
ing high in its partnership with Northrop
Grumman Systems Corporation (NGSC)
to maintain the complex E-8C Joint
Surveillance Target Attack Radar System
(Joint STARS) software through integrat-
ed teaming. As legislative support and
expectation for government-private part-
nerships continue to grow, software
organizations are finding more opportuni-
ties to leverage the best of each side’s
infrastructure to provide both govern-
ment core capability and optimum sup-
port for fielded systems.

The challenge is figuring out how to
optimize the new and unconventional
government-private relationship. While
many government-private partnerships
cast the parties in traditional contractor-
subcontractor roles, the 402 SMXG and
NGSC partnership has taken the concept
to a new level with a truly integrated
team fielding war-winning capabilities
through software maintenance.

The E-8C Joint STARS Systems
Group (E8SG) is a long-range air-to-
ground surveillance system designed to
locate, classify, and track ground targets in
all weather conditions. It is operated by
the 116th Air Control Wing (ACW) based
at Robins AFB. In 1998, the Air Force
designated Joint STARS a core workload.
The Department of Defense (DoD) serv-
ices designate certain weapon systems,
equipment, and components as mission-
essential for support of scenarios
approved by the Joint Chiefs of Staff. The
DoD ensures that there is core depot
maintenance capability to support these
mission-essential weapon systems. Core
exists to minimize operational risks and to
guarantee required readiness for these
weapon systems.

In November 2000, the 330 Intel-
ligence Reconaissance and Surveillance
Group (330 IRSG), also at WR-ALC,
awarded a Total System Support

Responsibility (TSSR) contract to NGSC,
which was the Joint STARS system inte-
grator operating out of its Airborne
Ground Surveillance and Battle
Management Systems Division in
Melbourne, Fla. This contract made
NGSC responsible for maintaining and
providing logistics support for the entire
fleet of 17 E-8C jets from nose to tail. In
that Joint STARS is a core logistics work-
load, a partnership was required between
WR-ALC and NGSC to enable WR-ALC
to support NGSC’s logistics responsibili-
ties with government-furnished supplies
and services (GFS/S). While this part-

nership includes the support of many
areas of logistics, this article focuses on
Joint STARS software maintenance.

The fiscal year 1998 Defense
Authorization Act provided statutory
authority for DoD depots to enter into
government-private cooperative arrange-
ments (partnerships) for the perform-
ance of depot-level work. While the con-
cept of partnering or teaming with
industry was conceived initially as a strat-
egy for depots to make skills, facilities,
and equipment available to the private
sector to perform government workload
and to maximize the utilization of skills,
facilities, and equipment that are required
to support core workloads, it lent itself
well to a somewhat different arrange-
ment regarding Joint STARS software
maintenance. In this case the contractor,
NGSC, had a history of maintaining
Joint STARS software almost exclusively.
Further, the facilities and expertise exist-
ed at the contractor facility in

Melbourne, not at Robins AFB. In this
case, the government is the novice and
the contractor is the expert.

As an umbrella to the WR-ALC-
NGSC partnership, a Long Range
Memorandum of Agreement (LRMOA)
was established between the three princi-
ple parties depicted in Figure 1. They are
WR-ALC, specifically the 402d
Maintenance Wing (MXW), formerly WR-
ALC/Maintenance Directorate; the E8
Systems Group, formerly the Joint STARS
System Program Office at Electronics
System Command (ESC); and NGSC.

The agreement set the ground rules
for partnering by acknowledging the exis-
tence of both common and unique indi-
vidual objectives. While there are mutual
objectives in government-private partner-
ships, there are many objectives that are
unique to the parties and may have higher
priorities to the respective parties.

Success hinges on the deliberate sup-
port of all objectives by all parties. The
challenge is pioneering innovative meth-
ods for achieving these objectives that
sometimes appear to be in complete con-
flict. The agreement recognized the new
and unique roles of the parties as well as
individual objectives, but most important-
ly set forth the agreement to pursue a set
of common objectives.

The system program director E8SG
objectives are to implement U.S. Air Force
(USAF) program management and acqui-
sition techniques as necessary to provide
the best possible support to the warfight-
er while ensuring that best value is
achieved for the USAF. The focus of
E8SG is on providing the user with supe-
rior combat capability by balancing pro-
gram costs, schedule, and performance
elements.

The WR-ALC objectives are, pursuant
to law, to maintain the appropriate levels
of core competencies in logistics manage-
ment, engineering, supply chain manage-
ment, and depot-level maintenance neces-
sary to ensure efficient and cost-effective
sustainment for all of its assigned weapon

“Success hinges on the
deliberate support

of all objectives
by all parties.”

Delivering Capabilities Through Partnerships

August 2005 www.stsc.hill.af.mil 9

systems now and in the future. To achieve
these objectives, the center must develop
in-house expertise and transition software
maintenance workload from the contrac-
tor to organic while mitigating risk to the
user and to the overall program. Success
in this endeavor satisfies the core directive.

An additional WR-ALC objective is to
partner with the contractor to reduce the
core capital investment through sharing of
equipment and resources.

Contracting Objectives
As the TSSR contractor, NGSC objec-
tives are to fulfill an important role in
assisting the USAF organizations in
achieving their respective objectives.
Consequently, NGSC’s primary objective
is to ensure the Joint STARS weapon sys-
tem continues to provide the user with
superior and reliable combat capability.
This performance, in turn, allows NGSC
to perform its TSSR contract obligations.
By providing superior Joint STARS sup-
port, NGSC establishes a positive reputa-
tion for the Joint STARS weapon system,
earns maximum performance incentives,
and enhances its reputation as a leading
provider of Joint STARS support.

When these individual objectives are
superimposed, a set of common objec-
tives comes into focus. The parties’ intent
is that through this LRMOA, and other
subordinate agreements, the parties will
successfully integrate their efforts to con-
tinuously improve total systems support
of Joint STARS. Notwithstanding the
unique roles and responsibilities of each
independent party, the parties collectively
agree that their overarching mutual objec-
tives are to provide the following:
• Superior support to the warfighter.
• Best value to the USAF (balancing

both program and broader objec-
tives).

• The mechanisms necessary to meet
the USAF core logistics competencies
requirements.

• Support to future core and source-of-
repair assignment analyses and deci-
sion-making to enable the USAF to
balance objectives of the Joint
STARS program with broader USAF
imperatives such as the maintenance
of core competencies.

• The creation of an integrated digital
environment (IDE) as a key enabler
in achieving the communication,
coordination, insight, and responsive-
ness objectives outlined in this docu-
ment (discussed later).

• The ability of NGSC to achieve rea-
sonable profits and enhance its cor-
porate reputation through demon-

strated performance in achieving the
aforementioned common objectives
as applicable to the TSSR contract.
Clearly there are many objectives ripe

for competing interest. The TSSR con-
tractor must balance maximizing corpo-
rate performance with supporting the Air
Force in meeting its core capability
requirements. The government partner
must acquire laboratories, personnel, and
training, and develop expertise and tran-
sition workload while mitigating program
risks. It is a tough challenge, but major
risk mitigators include early identification
and optimization of individual strengths,
practical integration of engineering and
management processes and human
resources, implementation and continued
optimization of communication process-
es and procedures, and identification of
weak areas followed by development of
tactical plans to effectively fill those
voids. Intense focus in these areas with
little regard for organizational bound-
aries and contractor/government affilia-
tions produces not only a partnered
team, but also an integrated team pos-
tured to improve efficiency, perform-
ance, and quality – a win-win scenario.
The bottom line: all objectives are met
and, most importantly, superior warfight-
er support is provided.

There is also the concept of trust.
Traditionally the government personnel
have been perceived as the customer in all
instances. The partnership scenario casts
the government partner in an entirely dif-
ferent role: an insider, a colleague, and yes,
in some forms even as a subordinate. Not
only is this scenario foreign to the con-
tractor, but extremely new and possibly
uncomfortable for the government per-
sonnel. It takes deliberate attention and

actions to bridge this gap.
The contractor developed the E-8C

and remains fiercely loyal to it, coveting
it and its caretaking. In many cases, it is
the lifeblood of the company or depart-
ment and, to some extent, its surround-
ing community. Eradicating the culture
of competition is essential to the success
of the government-private partnership,
but this cannot be mandated or accom-
plished externally. It can only come from
within the integrated team through
building the spirit of teamwork and
shared goals as reported in the following
section.

Working Together
While many obstacles can be anticipated
at the outset and contingencies devised,
most lie in waiting just around the corner
and can initially appear to be insur-
mountable. To name a few, there is geo-
graphical separation, differences in soft-
ware laboratory setup and capability, dif-
ferent technical and management
processes, risk to contractor perform-
ance due to the government’s poor per-
formance, competition versus teamwork,
and the previously discussed core objec-
tives versus best value.

The E-8C is essentially a spiral devel-
opment system with continuous develop-
ment of new system-level enhancements
and functionality, and subsequent field-
ing of these new capabilities through
integration into the software mainte-
nance process. Concurrent with new
development is ongoing identification of
software change requirements to address
deficiencies and defects, which is the cus-
tomary software sustainment life cycle.

The first four years of the partner-
ship took a natural course with respect to

JOINT STARS

JOINT PROGRAM

OFFICE
(ESC/JS &

WR-ALC/LXJ)

DEPOT

MAINTENANCE

ACTIVITY GROUP
(WR-ALC/MASK)

NORTHROP

GRUMMAN

CORPORATION

Future Support

TSSR Contra ct

Service Level

Agreement (SLA)

Partnering

Agreemen t

Figure 1: Long Range Memorandum of Agreement

Figure 2: FOC Critical Area Weighting Factors

JOINT STARS

JOINT PROGRAM

OFFICE E8SG (ESC)

and

330 IRSG (WR-ALC)

Funding for GFS/S Budget for GFS/S

Service Level

Agreement (SLA)

Future Support

TSSR Contract

DEPOT

MAINTENANCE

ACTIVITY GROUP

402 MXW (WR-ALC)

NORTHROP

GRUMMAN

CORPORATION

Workload Tasking for GFS/S

Partnering

Agreement

Implementation Agreement

Supplier Requirements Document

Software Transition Plan

 25%

Software Laboratory

10%

Management

10%

Processes

30%

Core Workload

25%

Technical Expertise

Figure 1: Long Range Memorandum of Agreement

Systems: Fielding Capabilities

10 CROSSTALK The Journal of Defense Software Engineering August 2005

software workload sharing and transi-
tion. The 402 SMXG team had experi-
ence in performing limited modifications
to the Joint STARS software specifically
in the area of ground support software
tools. These tools varied from pre- and
post-mission support tools to software
development and test tools. At first,
NGSC tasked the 402 SMXG to perform
software change projects in these areas.
As the system integrator prior to the
partnership, NGSC integrated – for a fee
– any organically produced software
modifications, thereby limiting organic
contributions to the software mainte-
nance effort.

Under the TSSR contract and
through the partnership, NGSC engi-
neering management opened the doors
to the NGSC software lab and invited the
Robins software engineers to deliver and
integrate their own software changes.
This single activity laid the foundation
for what would become the standard
software integration process. The 402
SMXG engineers would become respon-
sible for following NGSC software engi-
neering processes for in-house software
delivery, integration, and testing. It also
was the first step toward building confi-
dence by the TSSR contractor in the gov-
ernment software maintenance team.

Prior to the partnership and the TSSR
contract, software requirements were
flowed to NGSC in a very structured and
formal process of requirements manage-
ment by the operational user, the 116th
ACW and the 330 IRSG. Under the TSSR
contract, NGSC took on a more program-
matic role and the responsibility for mak-
ing capability- and value-based decisions
with regard to requirements management.
NGSC established several requirements
working groups in specific functional areas
of the software. These working groups
consisted of representatives from all stake-
holders, including the user, contractor,
government team, and program office.

The working groups are responsible
for evaluating software problems, alter-
native solutions, and ultimately recom-
mending requirements. Involvement by
the government software team in these
forums is essential to establishing a core
software maintenance capability and has
proven invaluable to the government
team. Final requirements are managed in
Integrated Release System Engineering
Management Teams (IR SEMT). While
this forum is the official communication
between the contractor and the program
office for software requirements, the 402
SMXG is a participant as well.

Probably as significant as anything
has been the inclusion of the 402 SMXG
in day-to-day software maintenance team
meetings. These vary in function, but are
numerous, and all are critical to continu-
ous and optimum performance by the
integrated software maintenance team.
There are weekly Administrative SEMT
meetings where project status and risks
are discussed and short-term direction is
provided. The weekly Technical SEMT is
chaired by the Joint STARS software
chief architect. In these forums, engi-
neering leads and subject-matter experts
discuss current tasks and issues from a
system perspective, and technical guid-
ance is cultivated and provided. In the
weekly software integrated product team
(IPT) meetings, software change designs
are reviewed by leads from each system
area to determine correctness prior to
approval at the weekly software configu-
ration control board (CCB). In the CCB,
completed work is approved for incorpo-
ration into the weekly software build, and
new assignments are made based on
mature requirements and software
change requests.

As you can see, the integrated team’s
concept of operation for a particular soft-
ware release is one of continuous problem
analysis, software modification, integra-
tion, and test. Major requirements that

flow from the IR SEMT are developed
and integrated simultaneously with the
continuous correction of defects. Major
requirements dictate the overall integrated
release schedule and determine when sig-
nificant modification curtails.

While NGSC has primary responsibil-
ity for conducting system-level testing on
the E-8C, the 402 SMXG participates in
this area as well to further the develop-
ment of government expertise and capa-
bility. In this phase, NGSC must balance
mentoring with meeting system require-
ments and schedule. The 402 SMXG has
performed various roles ranging from
mission planning using the ground soft-
ware tools to actually flying on test aircraft
and performing system-level tests.

The 402 SMXG possesses an extraor-
dinary benefit in being co-located with the
single Joint STARS operational wing, the
116th ACW. Not only does the 402 SMXG
reside in the same building as the 116th
Computer Systems Squadron that per-
forms pre- and post-mission operations as
well as software requirements manage-
ment, but the 402 SMXG also operates
and maintains the Joint STARS mission
crew training systems in the same facility.
Access to this critical resource enables the
402 SMXG to test the IR’s weekly devel-
opmental builds on a target system. This
can be done because Joint STARS incor-
porates the concept of a single software
baseline. The same software that executes
on the E-8C also executes on the trainers.
Further, the 402 SMXG has the responsi-
bility of ensuring the IR will operate
according to specification on the training
system once complete.

Achieving Full Operational
Capability
As stated before, the 402 SMXG has
benefited immensely by partnering with
the Joint STARS integrator and being
allowed to perform as an integrated
teammate rather than as a subcontractor.
This natural teaming process has enabled
processes and relationships to form from
the ground up rather than be dictated
from above. However, in the fourth year
it became obvious that a quantitative
structure was needed to evaluate when
the 402 SMXG would be certified as
capable of performing the software
maintenance workload; in other words,
achieving full operational capability
(FOC). A Core Activation Plan (CAP)
was established to provide the FOC plan
and criteria. The FOC methodology con-
sists of a scoring mechanism to evaluate
the government software maintenance

JOINT STARS

JOINT PROGRAM

OFFICE
(ESC/JS &

WR-ALC/LXJ)

DEPOT

MAINTENANCE

ACTIVITY GROUP
(WR-ALC/MASK)

NORTHROP

GRUMMAN

CORPORATION

Future Support

TSSR Contra ct

Service Level

Agreement (SLA)

Partnering

Agreemen t

Figure 1: Long Range Memorandum of Agreement

Figure 2: FOC Critical Area Weighting Factors

JOINT STARS

JOINT PROGRAM

OFFICE E8SG (ESC)

and

330 IRSG (WR-ALC)

Funding for GFS/S Budget for GFS/S

Service Level

Agreement (SLA)

Future Support

TSSR Contract

DEPOT

MAINTENANCE

ACTIVITY GROUP

402 MXW (WR-ALC)

NORTHROP

GRUMMAN

CORPORATION

Workload Tasking for GFS/S

Partnering

Agreement

Implementation Agreement

Supplier Requirements Document

Software Transition Plan

 25%

Software Laboratory

10%

Management

10%

Processes

30%

Core Workload

25%

Technical Expertise

Figure 2: FOC Critical Area Weighting Factors

capability against five critically weighted
areas as depicted in Figure 2. Those areas
include 1) core workload, 2) technical
expertise, 3) software laboratory, 4) man-
agement, and 5) processes.

This status against this CAP is pre-
sented to WR-ALC, NGSC, SPO, and the
116th ACW senior leadership semiannual-
ly in the Joint STARS Partnership Review
Committee briefing. Upon performing the
initial FOC evaluation, we learned that the
area needing the most attention was tech-
nical expertise. Mentoring would be
required from the contractor to the gov-
ernment team in specific areas that are sta-
ble with minimal modification, and in spe-
cific areas where the government team
lacked sufficient experience and had per-
formed minimal or no software changes.

To complete the picture, deliberate
steps were required. NGSC increased the
level of software maintenance workload
assigned to the 402 SMXG in these areas
and increased the level and quality of
mentoring of government engineers.
This initiative ensures quality software is
delivered on time in addition to transfer-
ring much needed knowledge to the 402
SMXG – again a win-win approach
through partnering.

A final, and critically important com-
mon objective, was the establishment of
an IDE. This goal was conceived at part-
nership inception, but has been the most
illusive. The IDE, as depicted in Figure 3,
was planned to be an electronic collabora-
tive workspace to facilitate joint and
simultaneous accomplishment of software
engineering at geographically separated
sites manned by separate teams. For it to
become a reality, the IDE required soft-
ware equipment laboratory upgrades on
both ends, security approvals, integration
and testing, and concepts of operation.

During the first four years of the
partnership, we relied upon weekly
overnight shipments between Robins
AFB and Melbourne to facilitate the
delivery of software products to and
from the two sites. In January 2005, our
IDE was completed with official opera-
tion of a network connection between
the two sites. We will use the connection
to transfer software files back and forth
to facilitate integrated software mainte-
nance teaming, and also to connect
remotely to each site for day-to-day oper-
ations. We are one step closer to becom-
ing a virtual integrated team via the com-
pletion of this connection.

Conclusion
Having said this, let us take a look at our
current status. We have integrated

processes and project management, we
have devised a method of sharing soft-
ware workload, we have made plans to
shore up the government’s weak areas in
system expertise, and we have completed
the initial IDE. The 402 SMXG’s current
score against the FOC criteria estab-
lished in the CAP is 95 percent out of a
required 90 percent. Upon completion of
the software release currently in develop-
ment, the partners plan to declare the
government capability fully operational.

Where do we go from here? While
the initial period of the partnership has
focused heavily on establishing organic
software maintenance capability concur-
rently with satisfying user requirements,
the future likely holds in store shrinking
budgets and uncertainty. The partnered
team will need to increase attention on
value and optimization on both ends.
With the next generation Joint STARS –
the E-10 – on the distant horizon, the
current platform will likely continue to
undergo upgrades with the addition of
new functionality to maintain pace with
the demands of global conflict.

NGSC will be called upon to develop
new capabilities that exploit the system
for maximum operational effectiveness.
The 402 SMXG will focus on increasing
knowledge base and efficiency to keep up
with the flow of software maintenance
requirements. Both teams will look for
opportunities to reduce costs and opti-
mize processes. Exploiting the IDE will
be a central focus for the near term. Joint
efforts to strengthen and optimize inter-
faces with the user to improve software
maintenance requirements management
will also be a central focus of the part-
nership.

Sharing and applying lessons learned
to other partnered programs within the
Air Force Materiel Command will be a
significant goal for the coming years.
While the future was initially somewhat
blurry, the Joint STARS software mainte-
nance partners have exploited their new-
found relationship to bring world-class
war fighting capability and value for the
warfighter into focus.u

Delivering Capabilities Through Partnerships

August 2005 www.stsc.hill.af.mil 11

Figure 3:The Robbins AFB and NGC Team Initial IDE

Robins Team – Warner Robins Air Force Base, Georgia

Unclassified Information

• Restricted access Web site (Secure Socket Layers)

• Livelink Intranet

Classified Information

• Secure Link (Leased T-1 with Encryption)

• Common Configuration Management System

NGC Team – Melbourne, Florida

NGC manages configuration control for both sites

from Melbourne; ESC/JS CCB approves releases.

Figure 3: The Robins AFB and NGC Team Initial IDE

About the Author

Chris D. Moore is the
director of the 402d Air
Combat Operational
Flight Program (OFP)
Squadron at Warner
Robins-Air Logistics Cen-

ter, Robins Air Force Base, Ga. He is
responsible for sustainment of both the
E-8C Joint Surveillance Tactical Air-
borne Radar System and the F-15 Eagle
OFPs. He has 23 years experience in
software engineering at Robins ranging
from acquiring, developing, and sustain-
ing software for automatic test equip-
ment to sustaining OFP software.
Moore has extensive experience with the
Capability Maturity Model® Integration
and in managing organizations steeped
in software process improvement cul-
ture. He has a bachelor’s degree in elec-
trical engineering and a Master of
Science in engineering management.

420 Richard Ray BLVD STE 100
Robins AFB, GA 31098
Phone: (478) 926-2754
Fax: (478) 926-3169
E-mail:chris.moore@robins.af.mil® Capability Maturity Model is registered in the U.S. Patent

and Trademark Office by Carnegie Mellon University.

Information supremacy wins wars.
Warfare has always required sharing the

right information with the right person at
the right time. Technology today enables
information sharing on a scale well beyond
what our forefathers imagined, but sharing
information with the wrong individuals can
have catastrophic consequences.

Secure information sharing is critical to
enable and protect the warfighter without
compromising the mission. The challenge
is that warfighter-crucial information is
highly diverse. Initiatives such as Network-
Centric Warfare, System of Systems, and
the Global Information Grid strengthen
the desire to share information with multi-
ple levels of security (MLS). MLS systems
have historically been among the most chal-
lenging and expensive systems to develop
and deploy [1]. Sharing and separating
information in coalition force operations is
an equally challenging and further compli-
cating problem.

Multiple Independent Levels of Security
(MILS) is an architecture that makes devel-
opment, accreditation, and deployment of
MLS-capable systems more practical,
achievable, and affordable. The MILS
architecture significantly increases protec-
tion, reduces time to develop, and reduces
schedule risk of deploying technology to
provide high-assurance systems that are
both safe and secure [1].

While the MILS architecture allows for
a system of highly secure distributed com-
ponents, it does not automatically guaran-
tee a secure composed system out of inde-
pendent secure components. System-wide
security is still up to the system designer
with MILS providing the building blocks
and tools needed to construct a system-
level security policy that can then be veri-

fied. There are tools, e.g., Boundary Flow
Modeling [2], for assuring that security poli-
cies compose for a given system.

Where We Have Been
In almost all commercial off-the-shelf
(COTS) operating systems and communica-
tions technologies, security is an after-
thought, addressed via a fail-first, patch-later
paradigm. When a system is penetrated,
fixes are then pursued to plug the hole.
After a new virus propagates, the enabling
weakness is repaired to stop further infec-
tion. The frail approach of attempting
repair of infected systems is also common.
Damage is frequently not detectable or
repairable in systems with weak security
foundations. Fail-first, patch-later is inap-
propriate for any mission-critical system
because it is reactive and always one step
behind the attacker. In mission-critical sys-
tems, damage must be avoided or bounded
when impossible to avoid. Proactive meas-
ures are required to safeguard information
and the warfighter, and prevent the damage
from happening in the first place.

In traditional architectures, there were
good reasons to assign all policy enforce-
ment to a monolithic security kernel. To
ensure that enforcement was non-bypass-
able, security functions had to be part of
every system service request. To ensure that
enforcement was tamper-proof, security
functions had to be in an address space sep-
arate from the application [3]. These securi-
ty functions needed to be in a monolithic
security kernel since the computing power
of two decades ago was not sufficient to
perform the context switches required to
separate all of these processes and data and
still maintain system performance.

The security kernel with its set of trust-

ed security functions often produced large,
complex, unstructured programs that were
difficult to certify at the higher assurance
levels [4]. SCOMP, which managed to
achieve the highest A1 security rating via
the historic “Orange Book” [5]1, was based
on a very simple security kernel [3]. Most
security kernel-based systems never
achieved the highest level of certification,
which required formal verification. The
Motorola Network Encryption System that
handled MLS data through encryption
achieved a much lower B2 rating, and the
XTS-300, the successor to SCOMP, was
certified at a B3 rating [3].

Aside from the difficulty of certifying
systems with complex, monolithic kernels,
the more important problem is in trying to
enforce a single, system-wide security poli-
cy. For example, Blacker, which successful-
ly handled encryption of MLS data, could
not successfully accommodate administra-
tive traffic within its model of classification
levels [3]. In general, security policies in the
kernel did not provide the robustness
required for many applications where appli-
cation-specific security policies would have
provided more tightly focused protection.

Where We Are Going
MILS was created to enable application-
level security engineering at a high level of
assurance while being affordable. MILS
takes advantage of Moore’s Law’s [6] per-
formance increases over the last two
decades by layering small, formally mod-
eled and mathematically verified com-
ponents together to create a high-assurance
foundation. In MILS, applications are
empowered to enforce their own security
policies instead of relying on generalized
kernel security services. MILS also enables

MILS:Architecture for
High-Assurance Embedded Computing

Dr. Ben Calloni
Lockheed Martin Aeronautics Company

The Department of Defense’s increasing dependence on new technology such as unmanned aerial vehicles has created a need for
high-assurance systems that deliver the strongest degree of security and safety. However, there has been a notable lack of sys-
tems, commercial or government-sponsored research, and engineering that meet these requirements. The Multiple Independent
Levels of Security (MILS) architecture is proposed as a solution to meet the needs for critical information assurance. MILS
is a componentized architecture based on a commercial off-the-shelf separation kernel that enforces strict communication and
partitioned process execution. MILS supports multiple levels of security communication, security policy composition, and mod-
ular design so that critical components are able to be evaluated at the highest levels to ensure secure and safe operation.

12 CROSSTALK The Journal of Defense Software Engineering August 2005

W. Mark Vanfleet
National Security Agency

R. William Beckwith
Objective Interface Systems

Gordon Uchenick
Objective Interface Systems

Jahn A. Luke
Air Force Research Laboratory

Dr. Carol Taylor
University of Idaho

MILS:Architecture for High Assurance Embedded Computing

August 2005 www.stsc.hill.af.mil 13

efficient systems engineering, where high-
assurance components can be effectively
reused without modification. This lowers
certification costs since certification arti-
facts can be reused.

The concept of MILS originated in
papers written by John Rushby, Ph.D, of
the Stanford Research Institute in the early
1980s [7, 8]. Rushby proposed that a sepa-
ration kernel divide memory into partitions
using the hardware memory management
unit and allow only carefully controlled
communications between non-kernel parti-
tions. This allows one partition to provide a
service to another with minimal interven-
tion from the kernel [7].

Traditional operating system services
that previously ran in privileged (i.e., super-
visor) mode such as device drivers, file sys-
tems, network stacks, etc., now run in non-
privileged (i.e., user) mode. Because a sepa-
ration kernel provides very specific func-
tionality, the security policies that must be
enforced at this level are relatively simple.
The primary concerns of a separation ker-
nel are the partitioning of processes and
data plus the containment of systemwide
failures. Consequently, we can capture the
security requirements for a separation ker-
nel by four foundational security policies:
• Data Isolation. Information in a parti-

tion is accessible only by that partition,
and private data remains private.

• Control of Information Flow. Infor-
mation flow from one partition to
another is from an authenticated source
to authenticated recipients; the source
of information is authenticated to the
recipient, and information goes only
where intended.

• Periods Processing. The microproces-
sor and any networking equipment can-
not be used as a covert channel to leak
information to listening third parties.

• Fault Isolation. Damage is limited by
preventing a failure in one partition
from cascading to any other partition.
Failures are detected, contained, and
recovered locally.
The resultant kernel is now much small-

er and simpler, and conducive to rigorous
inspection and mathematical proof of cor-
rectness by techniques such as formal
methods. This size reduction is an instanti-
ation of MILS’s most fundamental benefit:
Dramatically reduce the amount of security-critical
code so that we can dramatically increase the level of
rigor when we inspect that code. If we are doing
very few things, we should be able to do
them very well, so well, in fact, that the
code can be trusted to protect our most valu-
able data under the highest level of threat.

MILS middleware is an expansive con-
cept with a very broad user-mode layer. It

contains many operating system services
such as device drivers that previously ran in
privileged mode. Running in user mode,
they are subject to the kernel’s security pol-
icy enforcement. MILS middleware also
includes functions traditionally thought of
as being one level removed from the core
operating system: file systems, network
stacks, common libraries, encryption,
authentication, etc. MILS middleware also
includes traditional application-level mid-
dleware technologies such as Common
Object Request Broker Architecture
(CORBA) [8], Data Distribution Service
(DDS), Web services, etc. MILS middle-
ware resides in the same user-mode parti-
tion as the application that it supports or in
protected user-mode partitions by itself.

Applications do their processing and
enforce their own security policies in user-mode
partitions. Applications running in their
partitions can only access the memory that
has been explicitly allocated for each parti-
tion. Application partitions can only com-
municate with each other through paths
that have been configured when the sys-
tem was generated. Under no circum-
stances may application partitions access
hardware directly unless explicitly author-
ized to do so. The MILS architecture, along
with a notional set of allowable informa-
tion flows, is illustrated in Figure 1.

Why is application-level security-policy
enforcement effective in MILS when it was
not effective by itself in traditional mono-
lithic architectures? It is because the MILS
separation kernel guarantees control of
information flow and data isolation. It
makes this guarantee for the first time at an
assurance level that was next to impossible
to achieve with the monolithic kernels. Due
to technology advances in both smaller cir-
cuits and increased functionality, we now
have processors powerful enough to handle
the context switching required for MILS,
while still maintaining system performance.

In the last 15 years, the number of con-

text switches per unit of time that a state-
of-the-art microprocessor can handle has
increased by a factor of 1,000. Processor
speed has increased by a factor of 100. The
number of transistors per cubic inch on a
wafer has increased by a factor of 125. We
can now perform 50,000 context switches
at a cost of 5 percent of the microproces-
sor clock. This 5 percent is the MILS secu-
rity and safety tax.

Because information originates only
from authorized sources, is delivered only
to the intended recipients, and the source is
authenticated to that recipient, the applica-
tion developer is empowered to build his or
her own reference monitors2 at the applica-
tion layer that include the following:
• Non-bypassable. Security functions

cannot be circumvented.
• Evaluatable. Security functions are

small and simple enough to enable rig-
orous proof of correctness through
mathematical verification.

• Always Invoked. Security functions
are invoked each and every time.

• Tamperproof. Security functions and
their data cannot be modified without
authorization, either by subversive or
poorly written code.
An acronym for these four attributes is

NEAT [9]. Security policy enforcement
that is not NEAT is not effective. Although
other operating systems have offered some
form of non-bypassability and tamper-
proof functionality, MILS provides

Figure 1: Separation Kernel

Figure 2: Secure Network System Configuration

MILS Socket

Lib

PCS

Partition Partition Partition Partition
1 2 3 4

Middleware Middleware Middleware Middleware

SEPARATION KERNEL

Application Network

Protocols and

Drivers

Figure 1: MILS Architecture Information Flows

API Application Programming
Interface

CIK Crypto Ignition Key
CORBA Common Object Request

Broker Architecture
DDS Data Distribution Service
EAL Evaluation Assurance Level
HAL Hardware Abstraction Layer
HTTP Hyper-Text Transfer Protocol
IPv6 Internet Protocol version 6
MILS Multiple Independent Levels of

Security
MLS Multiple Levels of Security

MMU Memory Management Unit
MSLS Multiple Single Levels of Security
PCS Partitioning Communications

System
SOAP Simple Object Access Protocol
RTOS Real-Time Operating System
TCP/IP Transport Control Protocol/

Internet Protocol
UDDI Universal Description, Discovery,

and Integration
WSDL Web Services Description

Language
XML Extensible Markup Language

Common Terms

NEATness for the first time in a COTS
package that is formally modeled and math-
ematically verified at a high assurance level.

Divide and Conquer
The duration, schedule risk, and cost of
evaluating, certifying, and deploying soft-
ware increase non-linearly with the size of
the code. These increases are especially
onerous at high levels of assurance. Guar-
anteed NEATness enables us to design a
MLS or Multiple Single Levels of Security
(MSLS)3 system as a set of independent
system high partitions with cross-domain
servers, downgraders, and guards enabling
secure communications both among those
partitions and also with external systems.

Another MILS objective is to enable
the evaluation and certification of a com-
plex system to be broken down into a num-
ber of independent, small evaluations.
Security-critical software components that
handle more than one level of information
can be evaluated at high levels of robust-
ness, approximately Evaluation Assurance
Level (EAL) 6+ of the Common Criteria,
an internationally approved set of security
standards [10]. Cross-domain servers,
downgraders, and guards, leveraging
NEATness, can be small and tightly
focused, making high-assurance evalua-
tions of those components practical,
achievable, and affordable. Single-level par-
titions, which each deal with only one level
of information, can be evaluated at medi-
um levels of robustness, approximately
EAL 4, which is practical and achievable
for large bodies of code. The independ-
ence of these evaluations also enables
reuse of code, reuse of application pro-
gramming interfaces (APIs), reuse of spec-
ifications, reuse of evaluation artifacts, and
reuse of certifications to the greatest
degree possible.

Connecting to Other Systems
MILS network components such as proto-
col stacks and their associated interface
device drivers can be put into partitions of
their own. This architecture has several
advantages:
• Network facilities can be used by multi-

ple application partitions.

• Network data is processed in unprivi-
leged user mode, eliminating a vulnera-
bility that is a common avenue of
attack.

• Complex protocol code such as
Internet Protocol (IP) Ver. 6 can be
evaluated and certified independent of
the applications using the code, en-
abling reuse of the evaluation artifacts.
Applications use an API to interact with

the network. The MILS network API can
have the same semantics as in a traditional
operating system such as the familiar
Transport Control Protocol/IP socket calls.
The API implementation difference can be
completely under the hood, transparent to the
application developer. Instead of interact-
ing directly with the protocol, a MILS sock-
et implementation uses the separation ker-
nel’s interpartition communications facility
to forward outgoing data to the protocol
stack. Incoming data is handled similarly in
the opposite direction.

Secure Network Systems
The network is the platform. The embed-
ded computer that is not connected to
another processor is a rare exception. By
enforcing its four foundational security
policies, MILS implements a robust infor-
mation assurance foundation in a single
node. We can then implement a robust
information assurance foundation through-
out a distributed system by providing end-to-
end enforcement of those same security
policies. End-to-end enforcement is pro-
vided by a high-assurance middleware com-
ponent called the Partitioning Communi-
cations System (PCS). Leveraging the sepa-
ration kernel’s guarantee of controlled
information flow within a single node, the
PCS is always interposed between an appli-
cation and the protocols/drivers that effect
an off-board data transfer. The configura-
tion is illustrated in Figure 2.

The PCS enforces the security policies
end-to-end by providing the following:
• Strong identity of each node within a

collection of MILS nodes (an enclave).
• Separation by level and/or community

of interest. Enclaves are then connect-
ed together via high-assurance MILS
cross-domain servers.

• Secure configuration, validating that all
security databases are consistent.

• Secure image loading.
• Secure clock synchronization.
• Provisioning of bandwidth and quality

of service.
• Suppression of covert channels.

Network Middleware Tools
While we are developing new systems that

enable the warfighter to share information,
it is important to not reinvent the wheel.
Distributed system solution designers make
frequent use of COTS network middleware
for various application paradigms:
• Client/server, often using CORBA [11],

distributes logic.
• Publish/subscribe, often using DDS,

distributes data.
• Web-enabled services, using Hyper-

Text Transfer Protocol servers and
components such as Extensible Markup
Language; SOAP [Simple Object
Access Protocol]; Web Services
Description Language; Disco; Universal
Description, Discovery and Integration;
etc. that enable the communication
between large diverse distributed com-
munities of interest.
All of these technologies can be viewed

as tools that provide the application pro-
grammer with a higher level abstraction to
the rudimentary socket interface. Much of
the code for these networking middleware
technologies can either reside together in
the same partition as the application that it
supports, or it can reside in a partition by
itself. In either case, porting existing code
to a MILS environment is a straightforward
task because the socket API does not need
to change. The PCS still fits between the
network middleware and the protocol stack
and/or device drivers.

The system architect should not view
the use of CORBA, DDS, or Web services
as mutually exclusive. A single application
can use CORBA for remote invocation, for
distribution of logic, and for smart pull of
needed information; it can use DDS for
smart push of sensor data that is being mon-
itored; and it can use Web services as a
graphical interface for reports from one
large community of interest to another, e.g.,
the Army infantry reporting threat data and
the Air Force monitoring Web reports and
providing air support.

There is an interesting side benefit to
combining network middleware with the
PCS. One of the purposes of network
middleware is to make the number and
location of processors sharing traffic as
transparent as possible to the application.
At the same time, in a secure networked
system, we need to know exactly where
our data came from and where it will go.
Merging PCS functions with network mid-
dleware such as CORBA or DDS gives the
system designer the flexibility to relocate
system functions without introducing new
threats to data confidentiality or integrity.
This enables ad hoc networks and coali-
tions to be formed based on newly identi-
fied threat data, and to be dissolved as
soon as the threat is dealt with.

14 CROSSTALK The Journal of Defense Software Engineering August 2005

Systems: Fielding Capabilities

Figure 1: Separation Kernel

Figure 2: Secure Network System Configuration

MILS Socket

Lib

PCS

Application Network

Protocols and

Drivers

Figure 2: Secure Network System Configuration

Security is required when fielding sys-
tems that are either mission-critical or use
national information. At the same time,
there is a massive investment in applica-
tions using traditional operating systems
and traditional middleware. The MILS
architecture can provide a high-assurance
foundation for fielded systems while pre-
serving much of the legacy code base.

Guest Operating Systems
A traditional operating system, either an
embedded real-time operating system (e.g.,
INTEGRITY, VxWorks, or LynxOS) or a
desktop operating system (e.g., Linux,
Windows, or Solaris) can run inside a MILS
partition as a guest operating system. Operating
systems written with portability in mind
have a hardware abstraction layer (HAL)
that localizes all processor-specific func-
tions. Writing a new HAL is the major task
in porting to a new central processing unit.
You can use that same expertise to write a
HAL that abstracts the MILS separation
kernel as the hardware to the guest.

By itself, the guest operating system
concept enables legacy applications to be
easily ported to the high-assurance MILS
environment. Another possibility is that
multiple MILS partitions can each contain
an instance of the guest operating system.
This effectively creates multiple virtual
operating systems on a single real micro-
processor. The MILS separation kernel
provides trustworthy separation with respect
to both memory access and central pro-
cessing unit time. Communications among
the partitions is limited to those paths
explicitly created when the system was gen-
erated. This is a practical path to imple-
mentation of cross domain solutions. It is
also a practical path to implementation of
high-assurance workstations suitable for
MLS or coalition force operations.

For example, inside a partition the guest
operating system can run as a thin client; it
can be downloaded from a remote server.
Which remote server a thin client is down-
loaded from can be determined from a
token reader or crypto ignition key. The
token would indicate nationality, clearance,
and job title. The PCS would open a secure
connection to a server that the user, who
inserted and unlocked the token, was
authorized to communicate with. Access to
the local devices such as screen, keyboard,
mouse, hard drive, etc., would be provided
by the MILS workstation.

Supporting the Warfighter
The Air Force Research Laboratory
(Information Directorate), in cooperation
with the National Security Agency,

Department of Defense prime contractors,
academia, and software suppliers, is manag-
ing a MILS program to combine the best of
existing commercial standards for flight
safety and integrated modular avionics with
the following:
• DO-178B, Software Considerations in

Airborne Systems and Equipment
Certification, Level A [12].

• ARINC-653, Avionics Application
Software Standard Interface [13].
The program is also combined with

the following appropriate standards for
security:
• Common Criteria (International Or-

ganization for Standardization 15408),
EAL 6, augmented [10].

• Director of Central Intelligence Direc-
tive 6/3, Protecting Sensitive Compart-
mented Information Within Informa-
tion Systems, Protection Level 5 [14].
There is significant synergy among

these standards. While they each have a spe-
cific area of interest, there is a great deal of
common ground between safety-critical
and security standards with respect to
sound engineering practice, meeting
requirements, and having the plans in place
to address flaws.

The participating software suppliers
that are currently developing MILS separa-
tion kernels are, alphabetically, Green Hills
Software, Inc. [15], LynuxWorks, Inc. [16],
and Wind River Systems, Inc. [17].
Objective Interface Systems, Inc. [18] is
currently developing the partitioning com-
munications system.

Putting It All Together
MILS is all about keeping things separate
that need to be separate and doing so with
components that we can trust with our
most important data under the most severe
threat. For security, we are keeping data
separate by classification level, by commu-
nity of interest, and by nationality. For
safety, we are keeping applications separate
by level of criticality. All of this is done
with COTS software and certification arti-
facts that are reusable. Leveraging this
reusability makes MSLS/MLS system
development practical and certification/
accreditation affordable and achievable.
The end result is fielded systems that have
high-assurance foundations but do not
require custom-built security architectures
for each new system.

For more information about MILS,
please see <http://mils.ois.com>.u

References
1. Vanfleet, Willard Mark, et al. “An

Architecture for Deeply Embedded,

Provable High Assurance Applica-
tions.” May 2003.

2. Freeman, James, George Dinolt, and
Richard Neely. An Internet System
Security Policy and Formal Model.
Proc. of 11th National Computer
Security Conference, Oct. 1988: 10-19.

3. Anderson, Ross. Security Engineering.
New York: Wiley & Sons, 2001.

4. Rushby, John. A Trusted Computing
Base for Embedded Systems. Proc. of
the 7th Department of Defense/NBS
Computer Security Conference, Sept.
1984: 294-311.

5. Department of Defense. Trusted
Computer System Evaluation Criteria
(The Orange Book). DoD 5200.28-
STD. Washington: DoD, 1983.

6. Moore, G. “Cramming More Com-
ponents Onto Integrated Circuits.”
Electronics Magazine 19 Apr. 1965.

7. Rushby, John. “The Design and
Verification of Secure Systems.” ACM
Operating Systems Review 15.5.

8. Rushby, John. “Proof of Separability: A
Verification Technique for a Class of
Security Kernels.” Computer Science
137: (1982) 352-367.

9. Partitioning Kernel Protection Profile,
May 2003.

10. Common Criteria for Information
Technology Security Evaluation, Ver.
2.1, 19 Sept. 2000.

11. Currey, Jonathan, Bill Beckwith, et al.
Real-Time CORBA 1.1 Specification,
Object Management Group Aug. 2002.

12. RTCA <www.rtca.org>.
13. ARINC <www.arinc.com/cf/store/

index.cfm>.
14. Director of Central Intelligence. “Pro-

tecting Sensitive Compartmented
Information Within Information Sys-
tems.” Directive 6/3. Washington:
DCID, 5 June 1999 <www.fas.org/irp/
offdocs/DCID_6-3_20Policy.htm>.

15. Green Hills Software <www.ghs.
com>.

16. Lynux Works <www.lynuxworks.
com>.

17. Wind River Systems <www.windriver.
com>.

18. Objective Interface <www.ois.com>.

Notes
1. Orange book levels began with A1 and

moved down through levels B3, B2, B1,
C2, and C1.

2. A reference monitor is an Access
Control concept referring to an abstract
machine that mediates all accesses to
objects by subjects [3].

3. MSLS means there are multiple chan-
nels each with their own separate data
classification [9].

August 2005 www.stsc.hill.af.mil 15

MILS:Architecture for High Assurance Embedded Computing

About the Authors

W. Mark Vanfleet has
worked for the National
Security Agency (NSA)
Information Assurance
Directorate for 18 years
as an information sys-

tems security analyst and mathemati-
cian. He holds NSA certifications in
crypto-mathematics, communication
and information systems security, and
software engineering process and prac-
tice. Vanfleet has been involved in
high-assurance software architecture,
design, and evaluation for 25 years. He
has bachelor’s degrees in mathematics
and computer science, and a master’s
degree in mathematics and statistics
from the University of Utah.

National Security Agency
9800 Savage RD STE 6709
Fort Meade, MD 20755-6709
Phone: (410) 854-6361
E-mail: wvanflee@restarea.ncsc.mil

R. William Beckwith
is the chief executive
officer and chief tech-
nology officer of
Objective Interface
Systems, Inc. He has

been engineering software for over two
decades with the last decade focused
on embedded and real-time systems.
Beckwith is a frequent speaker on real-
time, embedded, and high-assurance
software in North America, Japan, and
Europe. He is currently involved in
developing software and standards for
high-assurance embedded systems.
Beckwith continues to lead the initia-
tive for the advancement of Common
Object Request Broker Architecture
and Multiple Independent Levels of
Security in the real-time and embedded
communities.

Objective Interface Systems
13873 Park Center RD STE 360
Herndon,VA 20171-3247
Phone: (703) 295-6519
Fax: (703) 295-6501
E-mail: bill.beckwith@ois.com

Systems: Fielding Capabilities

16 CROSSTALK The Journal of Defense Software Engineering August 2005

Ben Calloni, Ph.D., is
a senior software and
avionics researcher for
Lockheed Martin (LM)
Aeronautics Company
in Fort Worth, Texas.

He has been addressing the feasibility
of using standards-based commercial
software in mission-critical avionics
systems since joining LM in 1997. The
past three years he has been investigat-
ing the use of commercial off-the-
shelf-based security solutions (Multiple
Independent Levels of Security pro-
gram) for the various LM Aero weapon
systems. Calloni serves on the board of
directors for and is active in both the
Object Management Group and The
Open Group: International Standards
Consortia. He has degrees in industrial
engineering and computer science
from Purdue University and a doctor-
ate in computer science from Texas
Tech University.

Lockheed Martin Aeronautics Co.
P.O. Box 748
MZ 8604
Fort Worth,TX 76101
Phone: (817) 935-4482
Fax: (817) 762-6784
E-mail: ben.a.calloni@lmco.com

Jahn A. Luke is a senior
program manager at the
Embedded Information
Systems Branch, Infor-
mation Directorate, Air
Force Research Labora-

tory (AFRL) where he is lead for legacy
system modernization and manager of
the Multiple Independent Levels of
Security (MILS) program. He has more
than 29 years of hardware and software
experience at AFRL in the development
of technologies for real-time simulation
systems and embedded software systems.
In addition to MILS, he currently man-
ages projects addressing the upgrade of
legacy embedded computer systems for
such programs as F/A-22, CV-22, and F-
117. Luke has a Bachelor of Electrical
Engineering from the University of
Detroit.

AFRL/IFTA
2241 Avionics CIR BLDG 620
Wright Patterson, OH 45433
Phone: (937) 255-6653 ext. 3585
Fax: (937) 656-4277
E-mail: jahn.luke@wpafb.af.mil

Carol Taylor, Ph.D. is
a professor of comput-
er science at the Uni-
versity of Idaho where
she currently teaches
classes in computer

security and does research. Taylor’s
research interests are in computer secu-
rity and software engineering with a
special emphasis on high-assurance
systems. Her research background
includes projects in survivability, intru-
sion detection, formal methods, and
multiple levels of security policy. Prior
to obtaining her doctorate, Taylor held
programming/analyst positions.

University of Idaho
Computer Science Department
Moscow, ID 83844
Phone: (208) 885-5276
Fax: (208) 885-9052
E-mail: ctaylor@cs.uidaho.edu

Gordon Uchenick is a
frequent presenter and
lecturer on Multiple
Independent Levels of
Security (MILS) as well
as an author on the

subject. Uchenick also participates in
the MILS community standards bod-
ies such as The Open Group. Prior to
joining Objective Interface, he was an
engineering specialist with Wind River
Systems, concentrating on the compa-
ny’s security technologies.

Objective Interface Systems
13873 Park Center RD STE 360
Hendon,VA 20171-3247
Phone: (410) 256-7102
Cell: (410) 952-2739
Fax: (410) 256-7104
E-mail: gordon.uchenick@ois.com

Software Engineering Technology

Federal organizations are relying more
and more on commercial applications

to supplement, enhance, or replace propri-
etary systems. This dependency is driven
by the promise of improved functionality
and reduced total ownership cost, as well
as concern over the lack of capability to
develop and maintain proprietary infor-
mation technology applications. However,
failure to successfully select, control, and
implement these critical components con-
tinues to result in projects that are deliv-
ered late and over-budget or that fail
entirely.

The following six-step methodology high-
lights the important activities that should
take place during a commercial off-the-
shelf (COTS) implementation. Following
this methodology throughout the software
development life cycle will ensure that sig-
nificant activities are not being ignored
and will increase the chances of planning,
executing, and deploying a successful
COTS-based software solution.

One of the biggest problems sighted in
COTS-based projects is a disconnect between time
and cost expectations during planning and those
actually realized.

During the planning stages, it is impor-
tant to plan appropriately for all the major
activities necessary to devise a well
thought-out solution that will not fall
apart with the first upgrade of one of its
components. Research [1, 2, 3, 4, 5] has
indicated the essential activities that must
take place to ensure successful COTS-
based projects:
• Analyze software requirements.
• Evaluate and select COTS solution(s).
• Negotiate terms with COTS vendor.
• Implement the COTS-based solution.
• Maintain and upgrade the COTS-

based solution.
• Maintain license, subscription, and

royalty fees.
Figure 1 portrays an overview of the

six steps outlined above and highlights the
interactions that may occur throughout
the execution of these steps. While this
diagram implies a time dependency
between these steps, it is important to
realize that in certain cases this is neither

strictly adhered to nor are all the steps
necessarily performed by the organiza-
tion(s) contracted to deliver a solution.
Some requirements analysis and COTS
evaluation are likely to occur in very early
stages of a project as feasibility and
affordability are analyzed.

The following sections provide more
details about each of these steps, along
with a brief description of the factors to
consider when evaluating the affordability
and timeliness of a COTS-based solution.
Specifics about the quantification and
application of these factors can be found
in [6].

1.Analyze Software
Requirements
Software requirements analysis is a critical
part of the software development process,
although too often this activity is over-
looked or glossed over in the rush to start
building software. The requirements analysis
process is necessary to determine what
functionality is necessary to deliver the
capability required by the eventual end-
user(s).

There are two general areas that need
to be explored when determining and
documenting requirements for a software
system: end user requirements and techni-
cal requirements. The discovery process
for end-user requirements involves busi-
ness analysts or requirements engineers
asking the end-user what they expect from
the software. Once end-user requirements
have been gathered, an important next
step is for the business analysts or require-
ments engineers to restate those require-

ments and present them back to the end-
user to ensure proper understanding.
Technical requirements can be gathered
through discussions with engineers who
understand the technical nature of the
problem being solved.

The question of whether or not COTS
solutions are a viable alternative becomes
an important factor during the software
requirements analysis activity because the
software requirements drive the selection
criteria for potential COTS solutions. This
being said, it is also important not to let
the availability of COTS solutions cloud
the analysis by obscuring requirements.

Solution providers should be aware
that it is unlikely that any COTS solution
will be available to satisfy all the require-
ments for a software system. The require-
ments analysis process should identify
which requirements are the must have
requirements and which can be somewhat
bendable. During the evaluation, and possi-
bly during implementation, tradeoffs will
be necessary to compensate for function-
ality not available in COTS solutions (or
promised and not delivered with a chosen
COTS solution). Decisions should be
made during the requirements analysis
activity to determine which functions can
be subject to such tradeoffs and which
cannot. If most or all of the software
requirements are determined to be must
haves, it is wise to revisit the decision to
pursue a COTS-intensive solution.

Although the focus of this article is on
COTS software solutions, it is important
to mention here that when entire systems
are being constructed, the COTS decision
may need to be visited even before soft-

Six Steps to a Successful COTS Implementation

Arlene F. Minkiewicz
PRICE Systems

A successful implementation of a commercial off-the-shelf-intensive software system can save programs money if you have the
right solution and understand the potential risks involved.

August 2005 www.stsc.hill.af.mil 17

Analyze Software

Requirements
Evaluate and

Select

Negotiate

Terms

No viable solutions?

Implement

COTS Solution

COTS fall short of expectations?

Maintain/Upgrade

Solution

Maintain License

and Renegotiate

Figure 1: Overview of the Six Steps

Software Engineering Technology

18 CROSSTALK The Journal of Defense Software Engineering August 2005

ware requirements analysis commences.
During the analysis of system require-
ments, decisions may be required to deter-
mine whether certain functionality should
be addressed with hardware or software.
The availability of software COTS solu-
tions could be a factor in the determina-
tion of the affordability of such tradeoffs.

As with all activities in a software
development process, successful execu-
tion of the requirements analysis process
takes time and effort. The major driver in
determining time, cost, or effort for the
software requirements analysis activity is a
measure of the amount of functionality
the software system is intended to deliver.
The measurement of software size is always
a challenge. A measure that quantifies
functionality delivered such as function
points or analogies to known systems is
best.

Whether the plan is for that function-
ality to be delivered primarily with COTS
solutions, newly developed solutions, or
some combination of the two, the time
and effort devoted to requirements analy-
sis should be fairly consistent. The techni-
cal complexity of the functionality as well
as the software’s operational platform will
also drive the requirements analysis effort
because more complex solutions require
more time to understand and communi-
cate. Additionally, the presence of project
constraints, timing, memory, or schedule
will impact the effort required for this
activity.

2. Evaluate and Select COTS
Solution(s)
Once a decision to pursue a COTS alter-
native is made, the first step is to deter-
mine the availability of COTS solutions
that have the potential to provide needed
functionality, then evaluate these solu-
tions. The main reasons to evaluate are the
following:
• Determine whether the functionality

promised is the functionality delivered.
• Determine whether system non-func-

tional requirements (portability, relia-
bility, security, performance) can be
met.

• Determine whether functional require-
ments can be met by the functionality
delivered.

• Determine whether a proposed suite
of components can operate success-
fully in the environment(s) where the
system is intended to operate.

• Determine whether a proposed set of
components can operate successfully
in an integrated fashion.

• Determine the stability and viability of

the vendor.
• Determine the willingness of the ven-

dor to cooperate and help make the
project successful.
The evaluation needs to be focused on

more than just product characteristics
such as functionality, maturity, technology,
architecture, and long-term viability.
There should also be a focus on vendor
characteristics such as maturity, stability,
cooperation, and ability to provide ade-
quate support, training, and documenta-
tion. The evaluation should also be used
to ensure that there are no compatibility
issues associated with using COTS solu-
tions from multiple vendors.

The selection process is often a com-
bination of the following three evaluation
techniques:
• Progressive filtering of available

COTS components. This requires
several iterations of filtering, each one

going into progressively more detail
until a single solution or set of solu-
tions emerges as the best answer.

• Puzzle assembly process. This
approach suggests that it is better to
evaluate a set of components at one
time using an evolutionary prototyping
approach. In this method, multiple sets
may be evaluated in parallel to identify
which of them comes closest to solv-
ing the entire puzzle presented by the
system requirements.

• Identifying the keystone COTS
software components. This is identi-
fying those components for which
requirements (whether they be techni-
cal, process, functional, vendor, etc.)
are unbendable, and then basing other
component selections on compatibility
and ease of interface with the keystone

components.
A commonly cited challenge by system

integrators is that COTS products often
fail to deliver the functionality or other
requirements promised during evalua-
tions. It is prudent to get some hands-on
time with the components being evaluated
where possible; this may be problematic as
it most likely requires a great deal of coop-
eration and support from both the vendor
and the integrating organization.

When performing a COTS evaluation,
it is valuable to obtain references from the
COTS vendors in an effort to speak with
developers and end users who have
worked with a particular COTS solution.
This not only provides valuable feedback
about vendors’ responsiveness and
dependability, it also aids the planning
process by highlighting problems or pit-
falls other integrators may have experi-
enced.

The evaluation and selection activity
not only facilitates identification of avail-
able COTS solutions, it also points to
those pieces of functionality that cannot
be satisfactorily implemented by existing
off-the-shelf solutions. An important
byproduct of this investigation may be an
examination of the cost, schedule, and
effort associated with developing custom
code to make up for required functionali-
ty missing in COTS solutions. This exam-
ination may require revisiting the
cost/benefit analysis leading to the deci-
sion to build a COTS-based solution.

Generally, the time and effort devoted
to the selection and evaluation activity is
often based on a predetermined level of
effort. The determination of this level of
effort should consider the amount of
functionality being implemented with
COTS solutions (based on functional size
or analogy), the number of solutions that
will be evaluated, the type(s) of evalua-
tions being performed, and the number
and criticality of evaluation criteria.

3. Negotiate Terms With
COTS Vendors
Certainly it is important to negotiate the
best deal possible when working with one
or more vendors to craft a solution. It is
even more important to understand the
impact of these negotiations and their
timing on the eventual success or failure
of your project. Several of the most com-
monly cited challenges of those building
software solutions with COTS compo-
nents involve vendor forthrightness and
cooperation [4].

Vendors are much more likely to
address customer concerns with missing

“When performing a
COTS evaluation, it is
valuable to obtain

references from the
COTS vendors in an
effort to speak with
developers and end

users who have
worked with a particular

COTS solution.”

Six Steps to a Successful COTS Implementation

or incomplete functionality and/or bugs
in the software before signing on the dot-
ted line. During the negotiation process, it
is important to address and resolve any
known issues and establish expectations
for issues that emerge during the integra-
tion process and throughout the product
life cycle. Clearly, the size of the vendor
and the size of the purchase may be fac-
tors in determining how demanding any
particular customer can be, but it is impor-
tant to set expectations with all of the
project stakeholders.

The end result of this negotiation
should be a clear picture of the non-recur-
ring and recurring costs associated with
the system being developed. A nonrecur-
ring cost is a one-time fee associated with
acquiring the COTS solution such as the
purchase price of shrink-wrapped soft-
ware. Recurring costs are those generally
based on usage or time of use such as
annual licensing fees. Negotiations should
also result in a common understanding
between parties of update and upgrade
policies, as well as expectations with
regard to vendor responsiveness and
cooperation. It may also be necessary dur-
ing this step to develop a plan with the
vendor to ensure that maintenance of the
deployed solution be possible even if the
vendor goes out of business. This plan
generally involves the escrowing of source
code to be made available only under
terms of the agreement such as bankrupt-
cy or company demise.

The cost and effort drivers for this
activity should be broken into two parts.
The first part is the actual dollar value that
is determined for delivery of the COTS
component after negotiations and any
promised royalties and other fees. The
second part relates to the amount of time
and resources that must be devoted to the
negotiation with the vendor.

4. Implement the
COTS-Based Solution
Once analysis, evaluation, and selection of
a COTS-based solution are complete,
implementation can commence. The fol-
lowing activities may be required to ensure
successful implementation.

Tailoring of a COTS Solution
There are certain necessities that should
be performed in or around software to get
the COTS software components config-
ured for the system and its requirements.
Databases and other parameters need to
be initialized and loaded, all or part of the
components need to be registered with
the operating system, security must be

activated or initialized, screens and reports
need to be scripted, and other script devel-
opment may be required.

Although these activities are unlike tra-
ditional coding exercises, they do take time
and effort to complete. The results of
these activities require testing and verifica-
tion. These tasks also require a significant
level of understanding as to how the
COTS component(s) work and how to
work with them. This requires reading
manuals and/or attending training and
then experimenting with the actual com-
ponents to reach a level of competency.

The major cost, effort, and schedule
drivers for the tailoring activity include the
amount and complexity of scripts, data-
base parameters, reports, and screens
being customized. Additionally, as security
and access control requirements increase
in rigor, they will drive up time and cost. It
is important also to consider the ease with
which the COTS solution can be under-
stood, the quality of training and docu-
mentation, and the integration team famil-
iarity with the COTS solutions being used
and the system being implemented.

Modification of COTS Software
Generally the definition of COTS soft-
ware precludes modifications because
COTS software does not have source
code available. This is the case when the
COTS software is a shrink-wrapped com-
mercial product. Sometimes solutions call
for the integration of a series of off-the-
shelf components that do not meet this
traditional definition of COTS but rather
are components with source code avail-
able that are either furnished by the cus-
tomer or otherwise obtained. While these
projects are not strictly COTS projects,
they do happen and are mentioned here
for completeness.

It would be nice if the COTS software
completely satisfied all the functional
requirements it was selected to meet, but
this is often not the case. In situations
where the source code can be made avail-
able, the project team needs to make a
determination whether or not modifica-
tion is an option. It is generally a bad idea
to make modifications to COTS software
because this negates much of the produc-
tivity increase obtained from using COTS
components and is likely to jeopardize any
likelihood of supplier maintenance of the
COTS components. If COTS modifica-
tions are being considered, care should be
taken to ensure that these modifications
are very modular in nature. The develop-
ers need to learn a great deal about the
architecture and basic structure of the
solution before any modifications can be

made. It is important to understand that
the project productivity hit can be sub-
stantial even when the slightest modifica-
tions are made to a COTS component.

The major cost, effort, and schedule
drivers for modifications to COTS soft-
ware are the same factors that drive costs
for any software modification project
(functional size, extent of modification,
technical complexity, eventual operating
platform, productivity, and efficiency of
development organization). These factors
must then be augmented to account for
unfamiliarity of the COTS solution code,
quality of COTS training and documenta-
tion, vendor cooperation, development
team experience with COTS solutions, and
the COTS integration process. It is also
important to include maintenance of the
entire COTS component in the affordabil-
ity analysis as once modifications have been
made it is unlikely that the COTS vendor
will continue to support their solution.

Design, Code, and Test of Glue Code
Glue code literally holds the system
together. Glue code is any code that needs
to be written to make the COTS software
components function as advertised
and/or as required. It is the code that ref-
erences the interfaces in the COTS soft-
ware component and needs to interpret
return codes from these interfaces. Glue
code is often required to convert data and
other information from the format in
which the system maintains data to the
format required by the COTS component.
In a well-written application, the glue code
acts as a layer between the system and
COTS components, encapsulating the
data in such a way that upgrades and
replacements are as painless as possible.
Finally, glue code is sometimes required to
add functionality that the COTS software
component implements inadequately or
that should be provided by the COTS
component but is not.

These development activities are com-
plicated due, primarily, to unavailable
source code. The complexity of glue code
development is akin to a situation where
an entirely new team of developers is
brought in to integrate custom built com-
ponents, but is given limited or no access
to the original development team and the
source code. The unfamiliarity of the
interfaces, along with the inability to
debug the components, adds complexity
to the development exercise.

Another factor that makes glue code
development differ from traditional code
development is the complete reliance on
vendors to fix bugs when they are discov-
ered, ensure that upgrades are upwardly

August 2005 www.stsc.hill.af.mil 19

Software Engineering Technology

compatible, release stable products, and fill
in where documentation falls short. Bug
fixing can be particularly problematic in a
COTS project, especially when there are
multiple vendors involved or when modifi-
cations have been made to the COTS com-
ponents. With multiple vendors, especially
with unavailable source code, the integra-
tor must rely on the vendors not only to fix
the bugs but also to cooperate with each
other in the identification of where a bug
actually resides. When the COTS compo-
nents have been modified, the integrator
often must struggle to convince the ven-
dor that the bug is in the original code and
not a side effect of changes they have
made. Careful modularization and docu-
mentation of any COTS modifications
may help alleviate this problem.

As with modifications to COTS com-
ponents, the major cost, effort, and sched-
ule drivers for glue code development are
not unlike those drivers associated with
any custom development, but the produc-
tivity of the development team needs to
be adjusted to account for unfamiliarity
and unavailability of COTS components
along with the requirement for vendor
support and cooperation in solving inte-
gration problems. As the number of dif-
ferent COTS components and the num-
ber of different vendors involved increas-
es, so increases the complexity (thus effort
and schedule) of this activity.

Integration and Test of COTS
Components With Other COTS or
Custom Components
The system needs to be integrated and
tested to ensure that all functional and
non-functional requirements are met. This
activity tests the entire system (or subsys-
tem) as a complete unit, verifying that
there are no system-level problems associ-
ated with incompatibilities or competing
demands of components for limited
resources.

Requirements related to performance,
reliability, and security could be particular-
ly problematic during this activity as these
types of problems are likely to go unno-
ticed until the whole system is running
together. It is best to use an incremental or
evolutionary approach when building
COTS-inclusive systems, as these
approaches advocate successive integra-
tions during development rather than a
waterfall-type process where integration
does not happen until the end of the
development.

A well-designed integration and test
approach would focus early releases on
those areas that are high risk or most like-
ly to lead to incompatibilities. If multiple

COTS components from multiple ven-
dors are being integrated, it is important
to have all of them running together at the
same time as early as possible, even if each
is functioning in very limited capacity with
respect to its intended feature set. This
helps identify potential contention and
incompatibilities between components.

When assessing the effort and sched-
ule for glue code development, tailoring,
or integration activities, an important fac-
tor is the update cycle for the COTS solu-
tions being integrated. If updates/
upgrades are frequent, additional time and
effort may be required to evaluate and
possibly incorporate these updates.

Upgrades and updates may be included if
they contain required bug fixes, improve-
ments to keep the look and feel current
with user expectations, or features that
relate to missing or incomplete require-
ments in earlier versions. Vendor quality
and stability, along with vendor(s) regular
release schedules, are important factors in
assessing effort associated with updates
and upgrades.

In general, the effort, cost, and sched-
ule for many system-level integration
activities is likely to be higher for COTS-
inclusive software than software that is
composed of custom-built components
because of the unfamiliarity with the code.
The COTS software component should
be viewed by the integrator as a black box.
The factors that drive the effort and
schedule for integration activities include
the amount of functionality being inte-
grated (including functionality provided
by homegrown development as well as
that coming from the COTS compo-
nents), the complexity of the functionali-

ty, the operating platform for the system,
glue code size, and vendor-related issues
such as cooperation, support, and upgrade
policies.

5. Maintain and Upgrade the
COTS-Based Solution
Once the software is deployed, the follow-
ing two ongoing activities are required to
keep it operational and keep end-users
happy.

Evaluation and Inclusion of Updates
and Upgrades From the Vendor
There are countless reasons why the inclu-
sion of updates and upgrades are desirable
once the product is deployed. If there are
bugs in the COTS software that affect sys-
tem operation, then an upgrade is obvi-
ously needed. Beyond this, the vendor
should be upgrading the product to keep
up with rapidly changing technology. To
maintain a software system that meets
market expectations with respect to per-
formance, look and feel, operating plat-
forms, etc., updates of the COTS software
components will be likely.

Whether including an update or
upgrade, each refresh of the COTS com-
ponents poses potential risk. Assessment
is required with each release to determine
whether it makes sense to include it in the
software system. Sometimes upgrades
change the interfaces to the COTS soft-
ware components so that with the
upgrade, existing functionality ceases to
work correctly, requiring a rewrite of
some of the glue code. Vendors find that
in order to offer new features or to keep
up with technology, they must change
interfaces and databases or rework func-
tionality. To get access to the new features
and technology in an upgrade, the soft-
ware developer may be forced to accept
changes he or she does not want or need
as well – creating additional cost with no
added value to the software system.

Every upgrade also carries with it the
possibility of incompatibilities with the
existing software system, other COTS
software components, or even the operat-
ing platforms on which the system runs.
For this reason, each upgrade should
include a repeat of system operational
testing and system regression testing to
ensure that the effects on system opera-
tion are understood and desirable. While it
is important to understand all of this
when evaluating whether or not to
upgrade, it is also important to understand
that there is a risk associated with failure
to upgrade. At some point, the vendor will
discontinue support of older versions of

20 CROSSTALK The Journal of Defense Software Engineering August 2005

“It is generally a bad
idea to make

modifications to COTS
software because this
negates much of the
productivity increase
obtained from using

COTS components and is
likely to jeopardize ...

supplier maintenance ...”

Six Steps to a Successful COTS Implementation

August 2005 www.stsc.hill.af.mil 21

the COTS software.
The major factors that drive cost,

effort, and schedule for the evaluation of
COTS upgrades include the amount of
functionality delivered by COTS solutions,
the number of COTS solutions in the sys-
tem, the upgrade/update frequency of the
vendor(s), and the quality and stability of
the COTS solutions. When (and if) a deci-
sion has been made to include
upgrade/updates of COTS solution(s),
the drivers for the integration and test are
the same as those for integration and test
during development, although the extent
of effort should be tempered by the
extent of functionality changes in the
upgrades/updates.

Bug Fixes
Software, whether it is homegrown or
acquired externally, is likely to have
defects. Bug fixing efforts for COTS-
intensive systems will differ significantly
from typical repair efforts. Additionally,
bugs may exist in the COTS software
component that the vendor is unable or
unwilling to fix for which workarounds in
the glue code need to be developed.

The effort associated with bug fixes
for COTS software, as with any software,
is a direct function of the quality of the
initial software offering, as well as the
quality with which bugs are fixed. This
quality is generally a function of the
amount of functionality, the complexity of
the system, and the development process-
es and practices employed by the initial
software developer. For COTS software,
some of these factors are apparent and
some are hard – if not impossible – to
find out. Also, how and when the bugs in
the COTS component get fixed is for the
most part out of the integrators’ control.

These factors complicate the process
of planning for maintenance of COTS-
based systems. Additionally, the mainte-
nance process is plagued with the same
issues cited earlier for the glue code
design, integration, and test: It is not
always obvious where the bugs actually
occur. Despite the hurdles mentioned, it is
still possible to plan proactively for the
maintenance of a COTS-based system
based on what is known. Functional size
of the entire system (including not just
COTS components but homegrown com-
ponents as well), system complexity, oper-
ating platform, glue code size, amount of
modification, and maintenance team pro-
ductivity can be used to baseline the
effort. This effort should then be adjusted
for the loss of productivity associated
with debugging through black box code
and interfacing with multiple vendors.

6. Maintain License,
Subscription, and Royalty Fees
License or maintenance fees need to be
paid in order to ensure updates and
upgrades as well as continuing support of
the COTS components. It is important to
understand vendor(s) upgrade policies. It
is also wise to do a long-term analysis of
the differences between annual subscrip-
tion fees (if subscription is an option) ver-
sus paying for upgrades on an individual
basis. This analysis should include upgrade
policies, vendor stability, and frequency of
releases. License and royalties should be
an important part of the initial negotiation
process. Renewal periods are an opportu-
nity to revisit the terms of the negotiation
to determine whether the vendor is meet-
ing support and upgrade commitments.

Conclusions
A well thought-out and well-executed
software project that incorporates one or
many COTS solutions can happen more
quickly and be more cost effective than
the same system implemented with cus-
tom developed components. Too often,
COTS projects are not thought out or
planned, running on the incorrect
assumption that every COTS solution is a
small integration project without the
issues and complexities cited above. This
way of thinking leads to unrealistic and
poorly managed expectations, resulting in
failed projects. These types of failures
occur when projects fail to plan for or
incorporate the additional activities
unique to COTS-intensive developments.
Following this six-step methodology will
ensure that important activities and deci-
sion points are properly executed, reduc-
ing many of the risks associated with
such developments.u

References
1. Ellis, T. “COTS Integration in

Software Solutions – A Cost Model.”
INCOSE Symposium, St. Louis, MO,
July 1995.

2. Center for Software Engineering.
“COCOTS.” Los Angeles, CA: Uni-
versity of Southern California, June
1997 <http://sunset.usc.edu/research/
COCOTS/cocots_main.html>.

3. Abts, Christopher. “COTS Software
Integration Cost Modeling Study.” Los
Angeles, CA: Center for Software
Engineering, June 1997.

4. Brownsword, L., et al. “Lessons
Learned Applying Commercial Off-
the-Shelf Products.” Pittsburgh, PA:
Software Engineering Institute, June
2000 <www.sei.cmu.edu>.

5. Oberndorf, P., et al. “Workshop on
COTS-Based Systems.” Software
Engineering Institute, Nov. 1997
<www.sei.cmu.edu>.

6. Minkiewicz, A. The Real Costs of
Developing a COTS-Based System.
Proc. of IEEE Conference on
Aerospace and Defense, Big Sky, MT.,
Mar. 2004.

About the Author

Arlene F. Minkiewicz is
chief scientist of the
Cost Research Depart-
ment at PRICE Systems.
She is responsible for the
research and analysis

necessary to keep the suite of PRICE
estimating products responsive to cur-
rent cost trends. In her 20-year tenure
with PRICE, Minkiewicz has researched
and developed the software cost estimat-
ing relationships that were the corner-
stone for PRICE’s commercial software
cost estimating model, ForeSight, and
invented the Cost Estimating Wizards
originally used in ForeSight that walk the
user through a series of high-level ques-
tions to produce a quick cost analysis. As
part of this effort she has invented a siz-
ing measurement paradigm for object-
oriented analysis and design that allows
estimators a more efficient and effective
way to estimate software size. She
recently received awards from the
International Society of Parametric
Analysts and the Society of Cost
Estimating and Analysis for her white
paper “The Real Cost of COTS.”
Minkiewicz contributed to a new para-
metric cost estimating book with the
Consortium for Advanced Manufactur-
ing – International called “The Closed
Loop: Implementing Activity-Based
Planning and Budgeting,” and she fre-
quently publishes articles on software
estimation and measurement. She has
also been a contributing author for sev-
eral books on software measurement
and speaks frequently on this topic at
numerous conferences.

17000 Commerce PKWY STE A
Mt. Laurel, NJ 08054
Phone: (856) 608-7222
Fax: (856) 608-7247
E-mail: arlene.minkiewicz@

pricesystems.com

22 CROSSTALK The Journal of Defense Software Engineering August 2005

Program managers (PMs) expect accu-
rate reporting of integrated cost,

schedule, and technical performance when
the supplier’s Earned Value Management
Systems (EVMS) complies with the
EVMS guidelines in the American
National Standards Institute (ANSI)/
Electronic Industries Alliance (EIA)
Standard-748-A-1998. However, EVM
data will be reliable and accurate only if
the following occurs:
• The indicated quality of the evolving

product is measured.
• The right base measures of technical

performance are selected.
• Progress is objectively assessed.

Using EVM also incurs significant
costs. However, if you are measuring the
wrong things or not measuring the right
way, than EVM may be more costly to
administer and may provide less manage-
ment value [2].

EVMS Shortcomings
The EVMS standard has significant short-
comings with regard to standards and
models for systems engineering (SE), soft-
ware engineering, and project manage-
ment. Consequently, there is no assurance
the reported earned value (EV) is based

on product metrics and on the evolving
product quality as defined by the stan-
dards and models.

First, the EVMS standard states that
EV is a measurement of the quantity of
work accomplished and that the quality
and technical content of work performed
are controlled by other processes. A PM
should ensure that EV is also a measure-
ment of the product quality and technical
maturity of the evolving work products
instead of just the quantity of work
accomplished. However, a Naval Air
Systems Command (NAVAIR) organiza-
tion that used EVM and the Team
Software ProcessSM to accelerate software
process improvement concluded that
EVM did not address product quality and
was not beneficial at the higher levels of
the Capability Maturity Model® (CMM®)
for Software [3].

Second, the EVMS principles address
only the project work scope. EVMS
ignores the product scope and product
requirements.

Third, EVM is perceived to be a risk
management tool. However, EVMS was
not designed to manage risk and does not
even mention the subject.

The following guidance will enable a

PM to use Performance-Based Earned
Value® (PBEVSM) to overcome the limita-
tions of EVMS and provide a framework
for utilizing PBEV as a key component of
project planning, measurement, and con-
trol. The guidance is based on actual proj-
ect experience and has contributed to the
success of software-intensive programs,
including the B-2 stealth bomber.

Department of Defense Policy
Compliance with SE standards will sup-
port the Department of Defense (DoD)
acquisition policy that programs will
implement SE plans (policy) [4]. The DoD
also published the Defense Acquisition
Guidebook (DAG) and the Systems
Engineering Plan (SEP) Preparation
Guide (SEP Guide) to provide discre-
tionary best business practices to comple-
ment the policy. The SEP Guide cites
engineering standards1 that are sources of
PBEV [5]. Table 1 shows pertinent policy
components and implementing guidelines.

Product Metrics and Quality
The Institute of Electrical and Electronics
Engineers (IEEE) 1220 and the EIA 632
have similar guidance regarding product
metrics and quality. Product metrics allow
assessment of the product’s ability to sat-
isfy requirements and to evaluate the
evolving product quality against planned
or expected values. Establishing a time-
phased product quality requirements base-
line against which progress can be meas-
ured normally precedes the schedule and
budget. An exception for the system defi-
nition stage of the systems development
life cycle, before the real product quality
requirements are known, is discussed later.
Of equal importance are a disciplined
requirements traceability process and a
requirements traceability database [6].

Performance-Based Earned Value
Paul J. Solomon

Northrop Grumman Integrated Systems

Performance-Based Earned Value® (PBEVSM) is an enhancement to the Earned Value Management Systems (EVMS)
standard [1]). PBEV overcomes the standard’s shortcomings with regard to measuring technical performance and quality
because it is based on standards and models for systems engineering, software engineering, and project management. The dis-
tinguishing feature of PBEV is its focus on the customer requirements. PBEV provides principles and guidance for cost-
effective processes that specify the most effective measures of cost, schedule, and product quality performance.

® Performance-Based Earned Value is registered with the
U.S. Patent and Trademark Office by Paul Solomon.

SM PBEV is a service mark of Paul Solomon.
® Capability Maturity Model and CMMI are registered in

the U.S. Patent and Trademark Office by Carnegie
Mellon University.

SM CMM Integration and Team Software Process are service
marks of Carnegie Mellon University.

Develop systems engineering plan. P 4.2.3.2 1.0

Event-driven timing of technical reviews. P 4.5.1 3.4.4

Success criteria of technical reviews. P 4.5.1 3.4.4

Assess technical maturity in technical reviews. 4.5.1 3.4.4

Integrate SEP with integrated master plan. 4.5.1 3.4.5

Integrate SEP with integrated master schedule. 4.5.1 3.4.5

Integrate SEP with technical performance measures (TPM). 4.5.1 3.4.4

Integrate SEP with earned value management. 4.5.1 3.4.5

Use TPMs to compare actual versus planned technical
development and design maturity.

 4.5.5 3.4.4

Use TPMs to report degree to which system requirements are 4.5.5 3.4.4

Use standards and models to apply systems engineering. 4.2.2,
4.2.2.1

Institute requirements management and traceability.

Use EVM. 11.3.1

met in terms of performance, cost, and schedule.

DoD SE Policy and Guides Policy DAG
SEP

Guide

4.2.3.4 3.4.4

Table 1: Department of Defense System Engineering Policy and Guides

August 2005 www.stsc.hill.af.mil 23

Success Criteria
The standards discuss the importance of
holding technical reviews at various stages
of development to assure that all success
criteria have been met. IEEE 1220 pro-
vides success criteria to be used at major
technical reviews. For example, some of
the success criteria for a preliminary
design review are the following:
• Prior completion of subsystem

reviews.
• Determine whether total system

approach to detailed design satisfies
the system baseline.

• Unacceptable risks are mitigated.
• Issues for all subsystems, products,

and life-cycle processes are resolved.
The success criteria should be defined

in a SEP or other technical plan. The cus-
tomer should review this plan with the
supplier and reach agreement on the suc-
cess criteria to be used at technical
reviews.

Technical Performance
Measurement
Technical performance measurements
(TPMs) are defined and evaluated to
assess how well a system is achieving its
performance requirements. TPM uses
actual or predicted values from engineer-
ing measurements, tests, experiments, or
prototypes. IEEE 1220, EIA 632 and “A
Guide to the Project Management Body
of Knowledge” (PMBOK Guide) [7] pro-
vide similar guidance for TPM planning
and measurement and for integrating
TPM with EVM. For example, EIA 632
states that TPMs predict the future value
of key technical parameters of the end-
system based on current assessments and
that milestones are established for com-
paring planned and actual progress.

SE Work Products
The SE process generates significant work
products that should be included in inte-
grated planning and measured with EV.
The process products of IEEE 1220 are
as follows:
• Requirements baseline.
• Validated requirements baseline.
• Functional architecture.
• Verified functional architecture.
• Physical architecture.
• Verified physical architecture.

These, or similar, work products
should be included in the integrated mas-
ter schedule, be the output of work pack-
ages, and have defined success criteria.

CMM Integration
The CMM IntegrationSM (CMMI®) [8] pro-

vides many practices that augment the
EVMS guidelines. CMMI also lists typical
work products (TWPs) within process
areas. To ensure traceability of product
quality requirements to work tasks and
work products, these TWPs, or similar
artifacts, should be the outcome of work
packages. Here are some TWPs in CMMI.

Requirements development TWPs
include the following:
• Derived requirements.
• Product requirements.
• Product-component requirements.
• Interface requirements.
• Activities diagrams and use cases.
• Results of requirements validation.

Technical solution TWPs include the
following:
• Documented relationships between

requirements and product compo-
nents.

• Product-component designs.
• Technical data packages.
• Allocated requirements.
• Verification criteria used to ensure

requirements have been achieved.
• Interface control documents.
• Implemented design.

Verification TWPs include these:
• Exit and entry criteria for work prod-

ucts.
• Verification results.

A decision analysis and resolution
TWP includes the results of evaluating
alternate solutions.

Cost Savings
Measurement costs money. An enterprise

must incur significant implementation and
sustainment costs to use EVM. These
costs can be reduced if the enterprise uti-
lizes an effective process to determine
what needs to be measured and limits the
measurements to those that meet its infor-
mation needs and objectives. Further-
more, management can be more effective
if it focuses on fewer but more critical
measures.

PBEV is cost-effective because it lim-
its the number of activities that should be
discretely measured to those that meet
defined information needs such as the
work products described above. Other
measurable activities may be planned as
level of effort, if it is not practicable to
measure them, or they may be appor-
tioned effort. Additional measurement
guidance is available in a Software
Engineering Institute technical note [9].

PBEV Characteristics
PBEV is a set of principles and guide-
lines that specify the most effective meas-
ures of cost, schedule, and product qual-
ity performance. It has several character-
istics that distinguish it from traditional
EVMS:
• Plan is driven by product quality

requirements, not work requirements.
• Focuses on technical maturity and

quality, in addition to work.
• Focuses on progress toward meeting

success criteria of technical reviews.
• Adheres to standards and models for

SE, software engineering, and project
management.

• Provides smart work package plan-
ning.

• Enables insightful variance analysis.
• Ensures a lean and cost-effective

approach.
• Enables scalable scope and complexity

depending on risk.
• Integrates risk management activities

with the performance measurement
baseline.

• Integrates risk management outcomes
with the Estimate at Completion.

PBEV augments EVMS with four addi-
tional principles and 16 additional guide-
lines.

PBEV Principles
The following are PBEV principles that
set it apart from EVMS:
1. Product Scope and Quality. Inte-

grate product scope and quality
requirements into the performance
measurement baseline.

2. Product Quality Requirements.
Specify performance toward satisfying
product quality requirements as a base

“The distinguishing
feature of PBEV is its
focus on the customer

requirements ... Progress
is measured against a

plan to fulfill all
customer requirements ...
management is able to
take rapid corrective
actions on deviations

that threaten customer
satisfaction ...”

Performance-Based Earned Value

measure of earned value.
3. Risk Management Integration. In-

tegrate risk management with EVM.
4. Tailor PBEV. Tailor the application of

PBEV according to the risk.
The first two PBEV principals are dis-

cussed below in greater detail.

Product Scope and Quality
The first principle introduces two control
elements that distinguish PBEV from
EVMS: product scope and product quali-
ty requirements. This principle focuses on
customer satisfaction, which is based on
delivery of a product that meets its quali-
ty requirements and is within the cost and
schedule objectives. The supplier has
business objectives to achieve maximum
customer satisfaction and to deliver the
product with the best possible cost per-
formance.

Product Quality Requirements
In the context of PBEV, the product
scope is defined and bounded in terms of
product quality requirements. A product
quality requirement is a characteristic of a
product that is mandatory in order for the
product to meet verified customer needs.
The set of product quality requirements
becomes the product requirements base-
line that is integrated into the perform-
ance measurement baseline along with
work scope, schedule, and cost objectives.

Product quality is also discussed in
EIA 632 (Requirement 10):
a. Identify product metrics, and their

expected values, that will affect the
quality of the product and provide
information of the progress toward
satisfying the acquirer and other stake-
holder requirements, as well as derived
requirements.

b. Compare results against requirements
to determine degree of technical re-
quirement satisfaction, progress toward
maturity of the system (or portion
thereof) being engineered, and varia-
tions and variances from requirements.

Measuring Quality
Project management processes require
progress reporting at periodic intervals,
normally monthly. However, progress
toward achieving product quality objec-
tives is not always measurable on a period-
ic basis. For example, a hardware or soft-
ware component may require the comple-
tion and assembly of many enabling work
products such as drawings or coded soft-
ware modules, before the integrated set of
work products may be measured against
product quality objectives. Consequently,
interim progress measurement is normally

against the scheduled completion of inter-
mediate, enabling work products.

The completion criterion for an
enabling work product, such as a drawing,
is determined by the organization’s
process quality procedures and standards.
Successful peer reviews or testing are
often used to determine the completeness
of interim work products against process
quality procedures.

PBEV provides guidance to measure
performance toward achieving a combina-
tion of the following:
• Schedule objectives for enabling work

products that meet process quality
objectives.

• Event-driven quality objectives when
the event is the achievement of meas-
urable product quality requirements.
Also, the achievement of significant

performance requirements may not be
measurable at the component or subcom-
ponent level but may depend on achieving
planned TPM or other quality objectives
that are measurable at higher levels of the
system architecture. Consequently, EV at
the work package level may be quantita-
tively linked to the performance of inte-
grated components at a higher level of the
work breakdown structure.

During the system definition stage, and
with the evolutionary acquisition approach,
the real product quality requirements are
not yet known [10]. Consequently, activity
accomplishment criteria should be estab-
lished to determine progress assessment
until the early product quality requirements
have been determined.

Evolutionary Acquisition
Per the DAG, when a program uses an
evolutionary strategy, each development
increment should have a specific set of
parameters with thresholds and objectives
appropriate to the increment (DAG,
Section 2.3.2). Within the development
increment, trade studies are used to
resolve conflicts between operational
capabilities, and functional and perform-
ance requirements (Section 4.5.6).

PBEV supports evolutionary acquisi-
tion because it is based on requirements,
both those that are known by the end of
a development increment and those that
are evolving during the increment. The
work products specified in PBEV
Guideline 2.2 include trade study data to
substantiate that system requirements are
achievable.

PBEV Guidelines
The PBEV guidelines are listed in Table 2
with references to their source standards
and models.

Application at Northrop
Grumman
PBEV began with a series of process
improvements at Northrop Grumman
Integrated Systems. The company was
driven by the need to improve software
development measurement. Initial im-
provements were based on Practical
Software and Systems Measurement
(PSM) [11]. Examples of performance-
based measures for EV from PSM include
functional requirements status, compo-
nent status, test status, and increment con-
tent-function.

A previous CrossTalk article,
“Practical Software Measurement, Perfor-
mance-Based Earned Value,” discusses
lessons learned, the improvement process,
and provides examples of the types of
measures that were discarded and imple-
mented [12], i.e., the measurement of de-
fects was retained as an indicator of qual-
ity and a predictor of final cost and sched-
ule. However, various measures of achiev-
ed requirements were used for schedule
progress and EV instead of defect
removal. Also provided is advice regarding
the suitability of measuring source lines of
code, defect and rework planning, and
accounting for deferred functionality.
Many of these techniques have been
incorporated into the NAVAIR handbook,
“Using Software Metrics & Measurement
for Earned Value Toolkit” [13].

These improvements paid off during
upgrades of the B-2 weapon system. The
new measures helped to make it a very
successful program.

The B-2 Spirit Stealth Bomber
Program implemented several
innovative process improvements
using EVM. These include inte-
grating earned value with systems
engineering processes, defining
improved software engineering
metrics to support EVM, and
developing a leaner, more effective
methodology called Performance-
Based Earned Value [PBEV]. The
PBEV methodology was used to
ensure that the warfighter received
the most functionality from soft-
ware development efforts. On
Joint Standoff Weapon/Generic
Weapon Interface System, we pro-
vided 85 percent more capability
than originally planned, on sched-
ule and under budget. [14]

Process improvement at the sector is
ongoing. Current policy requires alignment of
sector processes with IEEE 1220 and a

24 CROSSTALK The Journal of Defense Software Engineering August 2005

Software Engineering Technology

Performance-Based Earned Value

August 2005 www.stsc.hill.af.mil 25

Performance-Based Earned Value Guidelines Source Section Number

Guide

CMMI ®

PMBOK 8.1.1.3

RD SP 2.1, 2.21.1 Establish product quality requirements and allocate these to product

components.

CMMI

PMBOK Guide

RM SP 1.4

5.5

1.2 Maintain bidirectional traceability of product and product component quality

requirements among the project plans, work packages, planning packages,

and work products.

CMMI

PMBOK Guide

RM SP 1.5

4.3, 5

1.3 Identify changes that need to be made to the project plans, work packages,

planning packages, and work products resulting from changes to the

products quality requirements.

CMMI
IEEE 1220
EIA 632

PMBOK Guide

MA SP 1.1

4.2.1, 4.2.2

5.2.3.1, 5.5,

8.1.3.5

6.8.1.5, 6.8.6
2.1 Define the information need and objective to measure progress toward

satisfying product quality requirements.

CMMI MA SP 1.2
CMMI RD SP 3.3
CMMI DAR SP 1.5

EIA 632 4.2.1, 4.2.2,

IEEE 1220 6.1.1.13, 6.7.6
6.8.1.5, 6.8.6

PMBOK Guide 4.5.1

8.1.3.5,

10.3.1.5,

Glossary

5.2.3.1, 8.2.1.4,

 • Results of trade-off analysis.

 • Allocated requirements developed, implemented into design,
or tested successfully.

• Achieving planned TPMs.

 • Meeting entry and success criteria for technical reviews.

 • Other quality objectives achieved.

2.2 Specify work products and performance-based measures of progress for

satisfying product quality requirements as base measures of earned value.

Examples are the following:

CMMI

PMBOK Guide

MA SP 1.2

8.1.3.2

2.3 Specify operational definitions for the base measures of earned value,

stated in precise, unambiguous terms that address:

• Communication: What has been measured, how was it measured,

what are the units of measure, and what has been included or excluded?

• Repeatability: Can the measurement be repeated given the same

definition to get the same results?

IEEE 1220

EIA 632

6.6, 6.8.1.5

4.2.2

3.1.1.6, 4.12,
5.2.4, 5.3.4, 6.4,

2.4 Identify event-based success criteria for technical reviews that include

development maturity to date and the product's ability to satisfy product

quality requirements.

EIA 632
Glossary
4.2.1, 4.2.2,

11.6.2.4PMBOK Guide

IEEE 1220 6.8.1.5, 6.8.6,2.5 Establish time-phased planned values for measures of progress toward

meeting product quality requirements, dates of frequency for checking

progress, and dates when full conformance will be met.

EIA 632 4.2.1

IEEE 1220 6.8.1.5, 6.8.6

PMBOK Guide 5.2.3.1, 10.3.1.5

2.6 Allocate budget in discrete work packages to measures of progress toward

meeting product quality requirements.

IEEE 1220 6.8.1.5, 6.8.6

PMBOK Guide 11.6.2.3

EIA 632 4.2.2, 6.1.2.6

2.7 Compare the amount of planned budget and the amount of budget earned

for achieving progress toward meeting product quality requirements.

CMMI

LL

MA SP 1.2 2.8 Use Level of Effort method to plan work that is measurable, but is not a

measure of progress toward satisfying product quality requirements, final

cost objectives, or final schedule objectives.

LL2.9 Perform more effective variance analysis by segregating discrete effort from

Level of Effort.

PMBOK Guide 11.1.3, 11.6.3.2 3.1 Identify changes that need to be made to the project plans, work packages,

planning packages, and work products resulting from responses to risks.

PMBOK Guide 7.3.2.33.2 Develop revised estimates of costs at completion based on risk quantification.

CMMI

LL

MA SP 1.2 4.1 Apply PBEV coverage to the whole work breakdown structure or just to the

higher risk components.

CMMI

LL

MA SP 1.2 4.2 Apply PBEV throughout the whole system development life cycle or initiate

after requirements development.

 Key to Abbreviations
RD: Requirements Development Process Area SP: Specific Practice
RM: Requirements Management Process Area MA: Measurement and Analysis Process Area
DAR: Decision Analysis and Resolution Process Area LL: Author's Lessons Learned and Process Improvements

© 2005 Paul Solomon

Table 2: PBEV Guidelines

process architecture that is CMMI-compliant.

Agile Methods
PMs have begun to use agile development
methods to streamline the acquisition
process. Alistair Cockburn stated that
being agile is a declaration of prioritizing
for project maneuverability with respect to
shifting requirements, shifting technology,
and a shifting understanding of the situa-
tion [15]. He also discusses an agile
approach to using earned value with burn-
down charts where the requirements
change frequently [16].

However, using agile acquisition
streamlining does not justify the elimina-
tion of key program documents and solid
program planning. Blaise Durante, the
U.S. Air Force deputy assistant secretary
for Acquisition Integration, stated that
implementing Agile Acquisition requires
the following [17]:
• Using innovative thought.
• Flexibility.
• Focusing on outcomes versus non-

value-added processes and reviews.
• Empowering program managers to

use the system versus being hampered
by over-staff management.

• Going back to the basics of program
management.
PBEV can support agile systems

development. Because it uses require-
ments-based planning and performance-
based measurement, it enables innovation,
flexibility, and focusing on outcomes
instead of non-value-adding processes.
Also, PBEV Guidelines 4.1 and 4.2 sup-
port agility by tailoring the application of
PBEV. Discrete measurement may be
applied only to the higher risk compo-
nents of the WBS and may be deferred
until the initial requirements have been
developed.

Conclusions
PBEV supplements traditional EVMS with
the best practices of SE, software engi-
neering, and project management stan-
dards and models. Its principles and guide-
lines enable true integration of project
cost, schedule, and technical performance.

The distinguishing feature of PBEV is
its focus on the customer requirements.
Measures of product scope and product
quality are incorporated into the project
plan. Progress is measured against a plan to
fulfill all customer requirements. Measuring
the wrong things does not dilute manage-
ment attention. Consequently, manage-
ment is able to take rapid corrective actions
on deviations that threaten customer satis-
faction and business enterprise objectives.
PBEV also integrates risk management

with EVM. Finally, because it is scalable,
risk-based, and responsive to changing cus-
tomer requirements, PBEV can support
evolutionary acquisition and agile systems
development.

It is recommended that process
improvement programs include plans to
incorporate PBEV principles and guide-
lines.u

References
1. American National Standards

Institute. “Earned Value Management
Systems.” (ANSI)/EIA-748-A-1998.
Apr. 1998. Reaffirmed 28 Aug. 2002.

2. Solomon, Paul J. “Integrating Systems
Engineering With Earned Value
Management.” Defense AT&L May/
June 2004:42 <www.dau.mil/pubs/
dam/05_06_2004/sol-mj04.pdf>.

3. Pracchia, Lisa. “The AV-8B Team
Learns Synergy of EVM and TSP
Accelerates Software Process Im-
provement.” CrossTalk Jan. 2004:
20-22. <www.stsc.hill.af.mil/cross
talk/2004/01/0401Pracchia.html>.

4. Wynne, Michael. “Policy for Systems
Engineering in DoD.” Memorandum.
20 Feb. 2004.

5. Department of Defense. Systems
Engineering Plan (SEP) Preparation
Guide. Ver. 0.95. Washington: DoD,
22 Dec. 2004.

6. Solomon, Paul J. “Practical Software
Measurement, Performance-Based
Earned Value.” CrossTalk Sept.
2001: 26 <www.stsc.hill.af.mil/
crosstalk/2001/09/solomon.html>.

7. Project Management Institute. A
Guide to the Project Management
Body of Knowledge (PMBOK
Guide). Newton Square, PA: PMI,
1996 <www.pmibookstore.org/prod
uctdetail.asp?productid=4106>.

8. CMMI Product Team. “Capability
Maturity Model Integration-Systems
Engineering/Software Engineering/
Integrated Product and Process
Development, Ver. 1.1.” Pittsburgh,
PA: Software Engineering Institute,
Dec. 2001.

9. Solomon, Paul J. “Using CMMI to
Improve Earned Value Management.”
CMU/SEI-2002-TN-016. Pittsburgh,
PA: Software Engineering Institute,
Oct. 2002. <www.sei.cmu.edu/pub/
documents/02.reports/pdf/02tn
016.pdf>.

10. Young, Ralph R. Effective
Requirements Practices. Addison-
Wesley, Mar. 2001.

11. Department of Defense. “Practical
Software and Systems Measurement.”

Ver. 4.0b. Washington: DoD and U.S.
Army <www.psmsc.com>.

12. Solomon, “Practical Software
Measurement.”

13. NAVAIR Handbook. “Using Software
Metrics and Measurement for Earned
Value Toolkit.” Washington, U.S. Navy,
Oct. 2004.

14. Solomon, “Practical Software Mea-
surement,” 29.

15. Cockburn, Alistair. “Learning From
Agile Software Development - Part 1.”
CrossTalk Oct. 2002 <www.
stsc.hill.af.mil/crosstalk/2002/10/
cockburn.html>.

16. Cockburn, Alistair. Crystal Clear.
Addison-Wesley, Oct. 2004.

17. Durante, Blaise. “Agile Acquisition-
Acquisition Streamlining - No Substi-
tute for Solid Program Planning.”
Agile Acquisition Aug./Sept. 2004
<www.safaq.hq.af.mil/news/aug-sep
2004/acq_streamlining.html>.

Note
1. Standards cited include the Standard

for Application and Management of
the Systems Engineering Process
(IEEE 1220), and the Processes for
Engineering a System (EIA 632).

26 CROSSTALK The Journal of Defense Software Engineering August 2005

Software Engineering Technology

About the Author

Paul J. Solomon man-
ages the Earned Value
Management Systems
(EVMS) for Northrop
Grumman Corporation,
Integrated Systems. He is

an author of the EVMS standard, and
received the Department of Defense
David Packard Excellence in Acquisition
Award. While a Visiting Scientist at the
Software Engineering Institute, he
authored “Using CMMI to Improve
EVM.” His book, “Performance-Based
Earned Value” will be published by the
Institute of Electrical and Electronics
Engineers Computer Society. Solomon
is a Project Management Professional.
He has a Bachelor of Arts and Master of
Business Administration from Dart-
mouth College.

Northrop Grumman Integrated
Systems
One Hornet WAY
TD21/2C
El Segundo, CA 90245
Phone: (310) 335-3308
E-mail: solomonpbev@msn.com

August 2005 www.stsc.hill.af.mil 27

Winston Churchill once noted, “Golf
is a game whose aim is to hit a very

small ball into an even smaller hole, with
weapons singularly ill-designed for the
purpose [1].”

Given that, you would wonder why
anyone would want to play such a game.
Yet, there is an attraction to golf for
many people, including me. And, not
only do we play the game, but we also do
the following:
• Keep our score and compare it to a

target known as par.
• Keep track of our scores and establish

a personal benchmark known as a
handicap.

• Compare our new scores to the bench-
mark and adjust it when necessary.

• Analyze what we did right.
• Analyze what we could do to improve.
• Like to talk about it … usually!
• Do benchmark studies when we com-

pare our scores and handicaps with
others and categorize ourselves in
groupings and rankings.

• Chart our progress as well as how we
are doing compared to others.

• Create sub-measures such as putts per
round, sand saves, driving accuracy,
and driving distance to help us under-
stand our strengths and weaknesses
and to identify and prioritize where we
need to improve.
If we are really good, we can take our

statistics and records to businesses to
solicit them as sponsors, because they will
want to support us and be associated with
us when we go on The Tour.

And, if measuring ourselves is not
enough, the golf equipment manufactur-
ers have done a lot of measurements on
their equipment. They have applied their
goals and targets to research and develop-
ment to create the technical advances in
today’s equipment that golfers enjoy and
benefit from. In turn, the manufacturer
advertises how successful players have
been using their equipment.

Before the Balanced
Scorecard
More than 25 years ago, I wanted to get
serious about improving my golf game.
Basically, I did what many have done. I
talked with my buddies and tried to figure
out what I should do.

I found that I needed to understand
where I was losing strokes. How many putts
was I taking on each green? How many

penalty strokes was I taking, and why was I
taking them? Was I saving or wasting shots
around the greens and from the bunkers?

I had to pay attention to what I was
doing when I played. I made mental notes
and compared the results from game to
game. I soon learned that the strategy I
needed was not on any one specific thing
but it needed to be several things together.
I now needed to determine how I would go
about improving the various parts of my
game. I started with the areas I perceived to
be the worst and tried to focus on each of
them. Unfortunately, perception is not
always a great way to go. Neither is trying to
work on several different areas at the same
time – at least without a strategy.

Fortunately, I usually played with the same
guys and they were able to help me under-
stand where I needed to improve. Having
somewhat analyzed my past performances,
I now needed to determine what I was
going to do to improve these areas of my
game. Especially if I wanted to beat my
friends!

Unfortunately, I was not in a position to
significantly increase my golf expenses. So,
the option of taking lessons could not be
considered. I did subscribe to a golf maga-
zine whose format and content I liked. I
was also able to get some tips from my golf
buddies as we each knew some different
things about the game. One of them was a
fairly accomplished golfer, and I was able to
get a lot of good tips from him.

Next, I needed to practice what I was
learning. This involved some work at the
driving range and trying some things as I
played. I figured that I would mess up every
now and then anyway, so it would not mat-
ter much if I messed up trying something
new. (Note: I do not recommend taking this
approach at work!)

Ultimately, I did improve. However, it
was a lot of trial and error based on my per-
ceptions of what I was actually experienc-
ing and doing as I played each game.

Like Churchill’s thoughts on golf clubs
being ill-designed tools, the tools and process-
es I used were ill-designed. I wish there had
been a tool that I could have used. Taking a
strategic approach to tracking the data and
reporting it would have made perfect sense.

What about the tools we use in our
work? Are they appropriately designed for
use in achieving the desired results?

The Balanced Scorecard - A
Useful Tool
According to BetterManagement.com:

A Scorecard is essentially a carefully
selected set of measures derived
from an organization’s strategy. It’s a
tool for leaders to communicate to

Balanced Scorecards: From Golf to Business
Bill Ravensberg

Quality Assurance Analyst

Metrics are all around us and we use them every day – even if we don’t realize it. Golf, that frustrating game that we love
to play, is used as an analogy to help better relate to the concepts and values of a Balance Scorecard; or, if you understand
Balanced Scorecards, then to golf! Any metric is fine by itself but can become much more meaningful and useful when com-
bined with others. Learn why a Balanced Scorecard is an appropriate way of reporting on a collection of metrics. The suc-
cessful implementation and application of scorecards enables the use of appropriate metrics to facilitate understanding, plan-
ning, and communications.

“Many people generally
look at measures in
isolation.The whole
picture is not always

taken into consideration.
But measurement,

in isolation, is taking a
chance that the results
will even be realized.”

Open Forum

employees and external stakeholders
the outcomes and performance
drivers by which the organization
will achieve its strategic objectives.
Therefore, the Scorecard provides
the link that translates strategy into
action across the enterprise, aligning
long-term strategy with coordinat-
ed, cohesive business activities. [2]

According to IT Management,

The balanced scorecard approach
was developed by Dr. David Norton
and Dr. Robert Kaplan of Harvard
University around 1990. Under this
approach, conventional financial
measures are augmented by addi-
tional measures that report on the
learning and growth perspective,
and the financial perspective.
However, because companies and
products vary, one of the challenges
of using the balanced scorecard
approach is selecting the appropri-
ate metrics for each of the four seg-
ments. [3]

The Balanced Scorecard contains four
segments: financial perspective, internal
business process perspective, customer
perspective, and innovation and learning
perspective. The financial perspective con-
tains the traditional financial measures. Its
underlying mission is to represent positive

financial contributions by the division to
achieving our clients’ business goals. Such
measures as the average cost to produce a
unit of product or process can be used to
determine the relative value of the contri-
butions by the division or organization.

The internal business process segment per-
spective contains measures of how the
internal processes are performing. The
mission is to deliver timely and effective
services. We need to know what services
and processes, internal to our division, we
must excel at to satisfy our customers.

The customer perspective contains meas-
ures pertaining to things that concern the
customer. The underlying mission is to
represent how the division is doing in
areas that directly affect the clients. Client
satisfaction surveys and ratings supporting
responses to client queries and problems
can be effective in demonstrating cus-
tomer support.

The innovation and learning perspective
measures the learning and growth of the
area. The mission is to develop the internal
capabilities to learn, innovate, and exploit
future opportunities. Success in this area
means we have developed the ability to
change and improve, enabling us to better
support the customer.

In summary, there are four segments of
the Balanced Scorecard, each consisting of
a collection of measures. These measures,
or metrics, are statistics that we can collect,
report, and use to review, evaluate, and

determine appropriate action(s).
When used properly, we make metrics a

tool and not the weapon that many have
come to fear. Let me demonstrate the use
of metrics in a Balanced Scorecard using
my golf improvement experience.

Improvement Through Metrics
I wanted to improve my golf scores. I was
not happy with what could have been con-
sidered my average score metric when I start-
ed. However, saying that I wanted to
improve my score and actually doing it
were two different things.

I needed a strategy. I needed to consid-
er several different things as part of my
strategy. The sample Balanced Scorecard in
Table 1 shows several of the areas men-
tioned earlier listed as specific measures in
the four different segments. It sure would
have been useful to have this Balanced
Scorecard to report on the state of my golf
experience and on each measure by taking
all the data tracked from all the rounds of
golf played.

Note that in Table 1, your scorecard
may have additional measures in a perspec-
tive, thus the blank rows. In an automated
tool, it is beneficial to have links to the def-
initions of the metrics, their data charts,
and the actual data for the metrics. Also,
the frequency of reporting can be whatev-
er is needed to be effective; it does not have
to be the same for all measures. Some
could be annual, some quarterly, and others
monthly.

The status for each item under the
four perspectives is determined by com-
paring the actual results against specific
targets. This is how the green, yellow, and
red status results are determined. Setting
appropriate targets, or goals, is an impor-
tant requirement. Note that the targets
need to be appropriate! Targets help in
understanding how the measure is per-
forming in respect to its internal goals and
strategies. If you want something like
stretch objectives, then I would suggest cre-
ating a second status.

As you can see, not all the measures in
the Internal Business Process Perspective
are on the green. Some are in the sand (yellow
status) while others are out of bounds (red
status). These results matched my game at
one time. Using my previously discussed
approach, I would have tried to do some-
thing in each of these areas to fix my game.
However, having data that I can analyze for
trends and tendencies can prove quite use-
ful. The data could actually be showing me
that the results of the other processes are
linked to driving accuracy. Perhaps all that is
needed is to work on, and improve, the
driving accuracy. Then, all the others may

28 CROSSTALK The Journal of Defense Software Engineering August 2005

Financial Perspective Status Date

Average Cost per Round of Golf GREEN August

Number of Golf Rounds per Month YELLOW August

Monthly Practice and Learning Cost GREEN August

Internal Business Process Perspective Status Date

Average Score YELLOW August

Sand Saves RED August

Driving Distance YELLOW August

Driving Accuracy RED August

Greens in Regulation YELLOW August

Putts per Greens in Regulation GREEN August

Penalty Strokes per Round YELLOW August

Customer Perspective Status Date

Golf Buddies' Satisfaction GREEN August

Golf Team Satisfaction GREEN August

Innovation and Learning Perspective Status Date

Number of Lessons per Month GREEN August

Hours per Month Practicing GREEN August

Number of New Tips Learned per Month GREEN August

GREEN: On the Green YELLOW: In the Sand RED: Out of Bounds

Table 1: Sample Balanced Scorecard Using Golf Metrics

Open Forum

Balanced Scorecards: From Golf to Business

August 2005 www.stsc.hill.af.mil 29

inherit better results. I would not be able to
determine this if I did not have all the his-
torical data for analysis. This then elimi-
nates any perception that may have result-
ed in inaccurate and wasted actions.

Another thing to consider is that all the
metrics in green status in the Financial
Perspective and Innovation and Learning
Perspective could be indicating something,
too. You may remember that I did not want
to increase my financial obligation. But,
something the overall metrics are showing
is that maybe I needed to reconsider this.
Perhaps putting more into lessons and
playing more would help bring the process
metrics into better shape.

Basically, this demonstrates that there
are many variables we need to consider,
and that many factors come into play in
determining what options can be taken to
address improvement. Many people gener-
ally look at measures in isolation. The
whole picture is not always taken into con-
sideration. But measurement, in isolation,
is taking a chance that the results will even
be realized. Would you want just one of the
subjects in your performance appraisal
used? If it is one that you did well in, well,
that would be great! But, what if it is a sub-
ject you need improving in? And, what if
your job or next pay raise was based on it?

As alluded to in Capers Jones’ overview
on the expanding roles of function point
metrics [3], different metrics are appropri-
ate for different companies. We cannot all
use the same metrics. We have to evaluate
our strategies and then determine what
metrics are needed. And, we need to deter-
mine what measures work best together to
represent a complete picture.

Business, Communication, and
Measurement
The business areas of our companies
understand measurement. They will do
internal and external evaluations and com-
parisons as a way of measuring and under-
standing themselves, their products, their
competition, and their competitions’ prod-
ucts. They will determine the differences
and translate their findings into improve-
ments in efficiency and effectiveness to
help gain market share.

In turn, the business wants to see an
efficient and effective Information Services
(IS) division. When a competitor comes
out with a new product, our business needs
to be responsive to market changes. The IS
division, as a service provider to the busi-
ness areas and company, needs to be
accountable and responsive so that these
needs can be quickly achieved.

The division needs to be able to com-

municate in a value-added way with the
business. Clarified terms and applications
of those terms is a good start. A measure-
ment program can supplement and
enhance communication, not only with the
business, but also within the division. It is
important to ensure consistency within
each division and across the organization
to ensure the measures contain the same
kinds of data so that we can have an apples-
to-apples comparison and roll up to a multi-
division strategic view of all the data.

To be effective in our communications,
we need to measure and report actual per-
formance. Do not make things up. Be hon-
est. We need to demonstrate to business
management that the IS division is man-
aged with a fact-based approach. The joint
evaluation of performance trends versus
established goals or targets is an objective
and non-emotional way to evaluate and
communicate.

Measurement is key and it needs to be
relative. It adds meaning and value when
looked at on the whole and not individual-
ly. It must supply useful information for
decision-making. Without measurement,
how will we ever know if we are improving
our processes and deliverable?

You may want to consider using multi-
ple scorecards. For example, one for
development, one for support, one for
project management, and one for infra-
structure support.

The Balanced Scorecard comple-
ments financial measures of past
performance with measures of the
drivers of future performance, say
Kaplan and Norton. Of course,
the old dictum still holds overall:
You cannot control what you can-
not measure. Thus the Balanced
Scorecard was a new concept
mainly designed to translate a com-
pany’s vision and actions into a
consistent set of measures. [4]

Effective measurement provides key
learning opportunities that can be used in
our efforts toward continual improvement.
We can use the findings to identify success-
ful practices and build on them. We can
eliminate unsuccessful practices and
improve those that just are not working the
way they were intended. A better under-
standing and appreciation of other divisions
can also be achieved as the development of
the metrics and their required data are
worked through, reported on, and acted on.

Measurement Lessons Learned
The strategies supporting the mission and

vision need to be considered to gain an
understanding of what is needed to per-
form the measurements. This will help in
determining the data required to fulfill the
measurements.

There are many sources of data when
you are dealing with a large number of
metrics. Some of the sources include
accounting, projects, function point analy-
sis, and surveys. Some data such as func-
tion points are not used by themselves for
any one measure but are a component of
several measures. Other data often used
with function points include cost, full-
time-equivalent effort, elapsed weeks, and
defects.

Ensure the metric definitions are com-
plete. Fully express each definition, includ-
ing the required data source(s), desired
trends, and the rationale to ensure under-
standing. Even with complete definitions,
the data source(s) and formula(s) may
change from the original understanding to
achieve the definitions’ rationale as the
metric is developed. Involve the people
needed for providing and using the data
early in the process to get buy-in. This
greatly reduces the time required to sell the
metrics.

Over time, the current set of metrics
may no longer meet the needs. All the dif-
ferent metrics that make up a scorecard
need to be monitored and adjusted as
strategic plans change. The measurements
need to be current and useful. More, or
different, metrics may be needed.
Therefore, a regular evaluation of the
metrics is required.

Data from outside the organization,
known as industry benchmarks, can be
used to gain an understanding of the per-
formance in respect to other companies in
the industry. This data needs to be similar
to your own data to ensure an apples-to-apples
comparison. There are different vendors
that have data for this use. They need to be
evaluated to determine which one will be an
appropriate source of data for your needs.

So,Who Is No. 1?
Like in golf and its manufacturers and
players, the IS division can realize
improvements and higher satisfaction
both internally and with the customer.
The scorecard facilitates communication
within the division and with the business
organization by providing balanced meas-
ures with supporting data.

In the July 2003 issue of Golf
Magazine, Greg Norman commented
about how the business world fascinates
him. He said:

That is a wonderful thing that golf

has given me. What amazes me is
that some of these businessmen
have told me, ‘Greg, you know
what, we’re great in our business,
but you have something 99.9 per-
cent of the people in this world
don’t have. You know what it’s like
to be number one.’ They may be
great CEOs, but they don’t know if
they’re the best CEO because it
can’t be measured. [5]

The Balanced Scorecard can be a very
useful tool … when properly used!u

References
1. Churchill, Winston. QuoteDB.com 11

May 2005 <www.quotedb.com/quotes/
2455>.

2. BetterManagement.com. SAS Institute
Inc. 11 May 2005 <www.bettermanage
ment.com>.

3. International Function Point Users
Group (IFPUG). IT Measurement:
Practical Advice from the Experts. 1st
ed. Addison-Wesley Professional, 17
Apr. 2002: 18.

4. IFPUG, 477.
5. Frank, James A. “Golf Talk with Peter

Kessler.” Golf Magazine July 2003
<www.golfonline.com/golfonline/
features/features/article/0,17742,
486703,00.html>.

Open Forum

30 CROSSTALK The Journal of Defense Software Engineering August 2005

About the Author

Bill Ravensberg, Cert-
ified Function Point Spe-
cialist, is a quality assur-
ance analyst with a lead-
ing Canadian financial
institution. He holds the

Certified Function Point Specialist desig-
nation from the International Function
Point Users Group. Ravensberg has been
working with Balanced Scorecards since
2001.

409 Brock ST
London, Ontario
N6K ZM3
E-mail:b_ravensberg@hotmail.com

Oklahoma City-Air
Logistics Center
www.bringittotinker.com
The 76th Software Maintenance Group
at the Oklahoma City - Air Logistics Center
is a leader in the avionics software indus-
try that understands the importance of
total system integration. The center has a
proven track record of producing soft-
ware on time, on budget, and defect-free.
Its staff of software professionals and
industry partners provides the expertise,
software, weapons, interface, and aircraft
systems that are fully integrated to ensure
dependable war-winning capabilities.
The center’s areas of expertise include
navigation, radar, weapons and system
integration, systems engineering, opera-
tional flight software, and more.

Ogden-Air Logistics
Center
www.mas.hill.af.mil
The 309th Software Maintenance Group
at the Ogden-Air Logistics Center is a
recognized world leader in cradle-to-
grave systems support, encompassing
hardware engineering, software engineer-
ing, systems engineering, data manage-
ment, consulting, and much more. The
division is a Software Engineering
Institute Software Capability Maturity

Model® (CMM®) Level 5 Organization
with Team Software ProcessSM engineers.
Currently the division is transitioning to
CMM IntegrationSM, which integrates
systems engineering practices with soft-
ware engineering processes. This model
more closely matches the complex hard-
ware, software, and systems products and
capabilities representative of the organi-
zation’s breadth of products and services.

Warner Robins-Air
Logistics Center
https://wwwmil.robins.af.mil
The 402d Software Maintenance Group
at the Warner Robins Air Logistics
Center provides combat-ready weapon
systems, equipment, services, and sup-
port personnel for the U.S. Air Force.
The center is a leader in systems engi-
neering; reliability, maintainability, and
availability engineering; safety engineer-
ing; human factors engineering; ad-
vanced design and manufacturing engi-
neering; and logistics engineering sup-
port. The center has worldwide manage-
ment and engineering responsibility for
the repair, modification and overhaul of
the F-15 Eagle, C-130 Hercules, C-141
Starlifter, C-5 cargo aircraft, U-2 surveil-
lance aircraft, all Air Force missiles, all
Air Force helicopters, and more.

WEB SITES

Get Your Free Subscription

Fill out and send us this form.

309 SMXG/MXDB

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:
APR2004 c ACQUISITION

MAY2004 c TECH.: PROTECTING AMER.
JUNE2004 c ASSESSMENT AND CERT.
JULY2004 c TOP 5 PROJECTS

AUG2004 c SYSTEMS APPROACH

SEPT2004 c SOFTWARE EDGE

OCT2004 c PROJECT MANAGEMENT

NOV2004 c SOFTWARE TOOLBOX

DEC2004 c REUSE

JAN2005 c OPEN SOURCE SW
FEB2005 c RISK MANAGEMENT

MAR2005 c TEAM SOFTWARE PROCESS

APR2005 c COST ESTIMATION

MAY2005 c CAPABILITIES

JUNE2005 c REALITY COMPUTING

JULY2005 c CONFIG. MGT. AND TEST

To Request Back Issues on Topics Not
Listed Above, Please Contact <stsc.
customerservice@hill.af.mil>.

BACKTALK

August 2005 www.stsc.hill.af.mil 31

Ever since I was old enough to
read, I have been fascinated by

the Civil War. As a military dependent
growing up, I was lucky to travel a lot,
which allowed me to continually talk
my father into taking detours to see
Civil War sites. While I was actually
born outside of the United States (my
dad was stationed in Edinburgh,
Scotland after World War II), my par-
ents are from Georgia. Travels in the
South gave me a very Southern per-
spective on the “War of Northern
Aggression.” I was lucky enough to
visit Andersonville, Ga., site of the
Civil War prison; the battlefields
around Richmond, Va.; and Chatta-
nooga, Tenn., site of Lookout
Mountain and the “Battle Above the
Clouds.”

Although I am an avowed
Southerner, one of my heroes has
always been Joshua Chamberlain, who
was an academic, but had a strong
urge to fight to save the Union. He
volunteered to fight, and was soon
made a lieutenant colonel. He fought
in many battles and by July 1863, he
was made a colonel. On July 2, 1863,
Col. Chamberlain was at Gettysburg
and was given orders to defend Little
Round Top, an important position
giving a commanding view of the
entire battlefield. His actions during
this key engagement held the Union’s
position and significantly contributed
to the Union victory at Gettysburg, a
battle that is now viewed as the turn-
ing point of the Civil War.

Several years ago, I finally got a
chance to visit Gettysburg and made
it a point to park my car near a rocky
area called Devils Den and walk
through the Slaughter Pen up towards
Little Round Top. On this area, Col.
Chamberlain, running low on ammu-
nition, ordered his men of the 20th
Maine to attach bayonets; he led a
bayonet charge downhill against the
15th Alabama, driving them back. As
a result of this and other heroic
actions, Col. Chamberlain (who would
be Brevet Maj. Gen. Chamberlain by
the war’s end) received the Medal of
Honor. When the Civil War ended,
Gen. Grant chose Chamberlain to
receive the formal surrender of

weapons and colors on April 12, 1865.
How in the world does this fit in

with this issue’s theme, “Systems:
Fielding Capabilities?” Col. Cham-
berlain was able to surprise the 15th
Alabama with a bayonet charge, and
this element of surprise allowed them
to succeed. The title of this journal is
“CrossTalk, The Journal of
Defense Software Engineering.”
Notice the software engineering.
Many times, members of the software
engineering profession are a bit short-
sighted about their products. It’s not
the software that will win the war –
it’s the systems capability.

Being the best shot in the world
will not help you if you run low on
ammunition. However, knowing that a
backup capability exists – and having
the training to deploy and use it – will
provide you with a winning capability.
Under heavy fire, running low on
ammo, Col. Chamberlain was able to
remember that a backup capability
existed. His soldiers had the training
to use the backup system, and thus
win the battle.

It’s the same way in the software
world: we need to be able to meet the
entire needs of our users, not just
stop with producing stovepipe soft-
ware products that are unable to
adapt, integrate, and survive. As soft-
ware engineers, we need to remember
that our job is to help win the war, not
just produce the software.

Winning is not just about produc-
ing a workable software system. It’s
about meeting and fielding complex
systems that have the capability to
meet the total needs of our users,
including contingency and emergency
conditions. It’s about the management
needed to see potential conditions
and prepare software systems and
capabilities that meet all of our users’
needs.

There should be no such thing as
an “unexpected need” at the software
level. Requirements engineering needs
to be accomplished on two levels –
system requirements and software
requirements. It is critical to under-
stand the entire system requirements
prior to starting software require-
ments.

In many cases, software design and
coding starts prior to complete soft-
ware requirements. It’s not the “cor-
rect” thing to do, but sometimes, it’s
the only choice you have. However, it
is absolutely critical to complete sys-
tem requirements prior to software
design and coding. Without complete
system requirements, you can’t envi-
sion the role that the software is going
to fulfill in the complete system. If
the conceptual design or “vision” of
the system is incomplete then the role
of software will probably be incom-
plete as well.

The path to fielding successful
capabilities is to make sure that sys-
tem requirements are fully thought
out before assigning system capabili-
ties to software components. This
requires planning and analysis. System
architects need to be motivated to
uncover “elements of surprise”.

Perhaps a little prodding with a
bayonet would provide useful motiva-
tion. I’ve certainly considered it for a
few select co-workers in the past!

— David A. Cook, Ph.D.
Senior Research Scientist

The AEgis Technologies Group, Inc.
dcook@aegistg.com

Bayonets and Deployment

Can You BackTalk?

Here is your chance to make your
point, even if it is a bit tongue-in-
cheek, without your boss censoring
your writing. In addition to accepting
articles that relate to software engineer-
ing for publication in CrossTalk, we
also accept articles for the BackTalk
column. BackTalk articles should
provide a concise, clever, humorous,
and insightful perspective on the soft-
ware engineering profession or indus-
try or a portion of it. Your BackTalk
article should be entertaining and
clever or original in concept, design, or
delivery. The length should not exceed
750 words.

For a complete author’s packet
detailing how to submit your
BackTalk article, visit our Web site at
<www.stsc.hill.af.mil>.

CrossTalk / 309 SMXG
6022 Fir AVE
BLDG 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Co-Sponsored by
U.S. Air Force

Air Logistics Centers
MAS Software Divisions

Software Engineering Division
Ogden Air Logistics Center

	Front Cover
	Table of Contents
	Systems: Fielding Capabilities
	Key Elements in Fielding Capabilities
	Delivering Capabilities Through Partnerships
	MILS:Architecture forHigh-Assurance Embedded Computing

	Software Engineering Technology
	Six Steps to a Successful COTS Implementation
	Performance-Based Earned Value

	Open Forum
	Balanced Scorecards: From Golf to Business

	From the Sponsor
	Our Job Is to Get It There

	From the Publisher
	Stay Focused on the User

	Coming Events
	Web Sites
	BackTalk
	Back Cover

